

VIDEX VIDEOTERM
Installation and Operation Manual

Curtis White
Darrell Aldrich

Third Edition
January, 1982

001053 VT-MAN-OOO

First Printing: March, 1 980
Second Printing: August, 1 980
Third Printing: January, 1 982

Published by:
VIDEX
897 N.W. Grant Ave.
Corvallis, Oregon 97330
Phone:L503] 758-0521

All rights reserved. No part of this publication may be reproduced
without prior written permission of VIDEX. Please call for more
information.

Copyright © 1980 by VIDEX.

Apple][® Apple Compter, Inc.
Micromodem][® D.C. Hayes Associate, Inc.
ROMWriter® Mountain Hardware, Inc.
EasyWriter® Information Unlimited Software, Inc.
Softcard® Microsoft

Apple PlE® Programma International, Inc.
Video 100 is a product of Leedex Corporation

Videx is a trademark of Videx, Inc.

ii

TABLE OF CONTENTS
Disclaimer..vii
Warranty...Viii

OVERVIEW
Introduction..1-1
Physical Description..1-3
VIDEOTERM Features..1-6
Apple][Hardware Peprequisites and Options................1-10

INSTALLATION AND CHECKOUT
How to Install the VIDEOTERM Board............................ 2-1
Installation Checklist ... 2-8
Checkout..2-9

How to Verify Correct Performance............................ 2-9
Video Monitor Adjustment... 2-13
Fault Diagnosis..2-16

OPERATION
Using the VIDEOTERM Board....................................... 3-1
VIDEOTERM Initialization... 3-3
Upper and Lower Case.. 3-5
Special Key Operation..3-6

SOFTWARE
Apple Language Interactions...4-1

Assembly Language. ...4-1
Integer Basic...4-2
Applesoft..4-3
Pascal...4-4

Language Considerations in General..............................4-7
Software Examples...4-9

Assembly Language...4-9
Integer Basic...4-13
Applesoft..4-22

 Pascal ..4-28
Using VIDEOTERM with Other Software.......................4-30
 EasyWriter . ..4-30
 Apple PIE4-3D
 Others..4-3D
Interfacing with Other Peripherals...................................4-31
 Softcard..4-31

D.C. Hayes Micromodem][.......................................4-31
Creating New Character Sets..4-35

Text..4-35
Graphics...4-37

iii

FIRMWARE
Firmware Control of the VIDEOTERM Board.................5-1

CRTC Internal Register Use...................................5-2
How to Modify CRTC Registers.............................5-8
Device Select Operation...5-9

 Video Set-Up Flags...5-10
VIDEOTERM Memory Mapping....................................5-12
VIDEX VIDEOTERM Firmware Listing...........................5-15

HARDWARE OPERATION
Theory of Operation...6-1
Shift Wire Mod..6-4
The Soft Video Switch...6-5

APPENDIX
ASCII Character Code Chart..A-1
Owners Notes...A-2
Technical Summary..A-3

iv

PROGRAM LISTINGS

Program Listing 1...4-6
Program Listing 2...4-10
Program Listing 3...4-15
Program Listing 4...4-18
Program Listing 5...4-23
Program Listing 6...4-26
Program Listing 7...4-29

FIGURES AND ILLUSTRATIONS

Fig. 1: Board Installed in System: Interior View..........2-2
Fig. 2: VIDEX Switchplate Assembly Mating

with VIDEOTERM Board.................................2-4
Fig. 3: Board Installed in System: Exterior View.........2-6
Fig. 4: insertion of Character Set EPROM into

the VIDEOTERM Board..................................4-35
Fig. 5: Line Drawing Character Set Keyboard

Correspondence...4-38
Fig. 6: Alternate Character Sets.................................4-39
Fig. 7: Standard Character Set..................................4-44
Fig. 8: Blank Forms for Future Character Sets...........4-52
Fig. 9: VIDEOTERM Soldering Points6-7
Fig. 1 0: VIDEOTERM Board Photograph...................A-4
Fig. 11: Schematic Diagram of VIDEOTERM Board...Endsheet

TABLES

Table 1: VIDEOTERM Use of Apple][RAM..................3-2
Table 2: VIDEOTERM Control parameters3-4
Table 3: Address Definitions by Language4-8
Table 4: CRTC Register Assignments...........................5-7

v

Notice:
Videx, Inc. reserves the right to make improvements or

changes in the product described in this manual at any time
without notice.

Disclaimer of All Warranties and Liability:
Videx, Inc. makes no warranties neither express nor implied

except as explicitly set forth in the Limited Warranty below, with
respect to this manual nor with respect to the product described
in this manual, its quality, performance, merchantability or
fitness for any purpose. Videx, Inc. software is sold or licensed
“as is”. The entire risk as to its quality and performance is with
the buyer. Should the programs prove defective following their
purchase, the buyer [and not Videx, Inc., its distributors, or its
retailers] assumes the entire cost of all necessary servicing,
repair, or correction and any incidental or consequential
damages. In no event will Videx, Inc. be liable for direct, indirect,
incidental, or consequential damages resulting from any defect in
the hardware/software, even if Videx, Inc. has been advised of
the possibility of such damages. Some states do not allow the ex-
clusion or limitation of implied warranties or liabilitly for incidental
or consequential damages, so the above limitation or exclusion
may not apply to you.

vii

VIDEX VIDEOTERM

Limited Warranty:

Videx, Inc. warrants this product to be free from defects in
material and workmanship for a period of ninety (90] days from
the date of original purchase Videx Inc. agrees to repair or, at
our option, replace any defective unit without charge Videx, Inc.
assumes no responsibility for any special or consequential
damages. No other warranty neither express nor implied, is
authorized by Videx, Inc. Some states do not allow the exclusion
or limitation of implied warranties or liability for incidental or con-
sequential damages so the above limitation or exclusion may not
apply to you.

Please return the registration card in order that VIDEX can
notify you of new products VIDEOTERM updates and new soft-
ware.

Mail to: VIDEX
897 NW. Grant Ave.
Corvallis OR 97330

viii

Errata

**
 * *
 * *

* IMPORTANT NOTICE: THE VIDEOTERM MUST NOW BE PLACED only IN SLOT 3. *
 * *
 * *

Since this manual was published, some changes have been made in the
Videoterm and other products. The Soft Video Switch an automatic version of
the Switchplate, was introduced. We generally recommend use of the Soft Video
Switch over the switchplate, however the two may be used together. A new
release of firmware, Firmware 2.4, has been included on your Videoterm. Here
are some of the features which have been added to your Videoterm by the new
firmware:

* The popular Escape I,J,K H cursor movement commands
* Pascal Card Type 6 protocol (eliminating the need for the

program Vidpatch, found on page 4—27)
* The Monitor /// is supported (a CRT from Apple Computer)
* The Soft Video Switch is supported (page 6—5)
* The Shift Wire Mod is supported (page 6—4)
* CP/M’s inverse/normal protocol (CNTL—O/CNTL—N)
* Interrupts are handled properly
* 20% faster output

There are two features documented in this manual which have been removed:

* The 80 characters by 18 line format (used by the 7 x 12 character
font)

* slot independence (the Videoterm MUST be placed in Slot 3)

More new products for your Videoterm include an 80 column VisiCalc
Pre—Boot Disc, an AppleWriter (Pre—Boot Disc and a Videoterm Utilities Disc.

ix

OVERVIEW

Introduction

The new Apple II peripheral that you have just
purchased combines the features of an asynchronous
serial interface card with the “guts” of a high
speed terminal to transform your current black and
white video monitor into a full feature intelligent
video display terminal. When properly adjusted, the
interface card clearly displays upper and lower case
characters using a 7 by 9 character dot matrix size
(the full matrix is actuall 9 by 9). An optional 7
by 12 matrix size (full size is 9 by 12) is also
available. You may select for 18 or 24 lines each
containing 80 characters. Special characters may be
defined by the user and preprogrammed EPROM chips
are available that offer various character fonts.
These capabilities are available under both the
Pascal operating system and both Basic languages
that Apple Computer, Inc., supplies.

All of these features are included on one
printed circuit (PC) board, the size of the
Applesoft or Language board, utilizing only 24
integrated circuits. The use of CMOS and low power
electronic components reduces the Dower draw needed
for the board to properly function and virtually
eliminates power conflicts with other expansion
cards. An on—board clock circuit regulates video
signal timing, providing the user with a clear,
flicker—free video image.

The firmware used with the VIDEOTERM board is
fairly transparent to standard Apple II and Apple
II—compatible software. The call addresses for
various hoard functions are fully documented,
allowing you to interface your software directly
with the display software if you desire. Specific
software interface information for the D. C. Hayes

1—1

Micromodem II (requires an EPROM replacement
firmware chip available from VIDEX), the ROMWriter
by Mountain Hardware, EasyWriter by Information
Unlimited Software and the Microsoft Softcard is
included. A variety of other software application
examples are included, along with specifics on Apple
Basic interaction with the VIDEOTERM.

 The remainder of this Overview chapter is
devoted to a description of the physical appearance
of the VIDEOTERM board, a full description of all
features of the board and the necessary Apple II
system prerequisites for its proper functioning.

It is best to close with a word of advice
concerning your new purchase. Treat it well and
with respect as the quality instrument that it is
and it will reward you with years of service,
probably lasting through the life of your Apple II
system. If any difficulty with the unit arises, you
should contact the store where you purchased the
VIDEOTERM. They should be able to determine if the
fault lies with the VIDEOTERM or if your video
monitor is incorrectly adjusted. If they cannot
help you, please feel free to contact VIDEX directly
so that the problem may be quickly corrected.

1—2

Physical Description

As you can see when you hold the VIDEOTERM
board in your hand, the hoard is small, compact and
relatively uncluttered with electronic components.
The implementation of the interface design is quite
economic, both in terms of initial purchase price
and by minimizing the number of parts which may
fail. The board measures only 7.25 by 2.75 inches,
about the same size as the Applesoft Basic firmware
card or the Language card.

As you look at the component side of the board,
you will notice a small crystal can on the
right—hand side of the board, possibly with the
label ‘Crystek’. This is the on—board crystal clock
which, with the rest of the clock logic circuit,
ensures flicker—free display characters on your
monitor. The clock should be labelled 17.430.

At the upper left of the board, you will see
the four small prongs of the video signal takeoff
jack and a fifth small prong next to it which is the
light pen takeoff jack. It is designed to be used
with a possible optional light pen.

A separate connector is included which connects
these five prongs to a standard video output female
plug. This connector will not be included if you
have purchased the optional, and more versatile,
Switchplate assembly with your VIDEOTERM. The
Switchplate assembly has an identical connector end
to attach to the VIDEOTERM board. The assembly
allows you to switch between the VIDEOTERM’s video
output signal and the Apple II’s video output signal
without having to change any of the cable
connections. A separate jumper cable, a
double—ended male RCA audio cable, connects a second
female video jack on the Switchplate to the Apple
II’s video monitor output female jack located on the

1—3

rear of the computer next to the cassette I/O ports By a
simple flick of the switch, you may the display either
PR#0 output on your video monitor this being in the
standard default Apple II video output format of 24
lines by 40 characters, or PR#1 output (where n is the
number of the slot in which the VIDEOTERM board has been
placed), which is in the VIDEOTERM output format. Thus,
you need only use one monitor with the VIDEOTERM,
although it is more convenient and provides more user
options if you have two monitors, one a color TV
connected to the standard Apple II video output (through
standard RF Modulator), the other a black and white
video monitor connected to the VIDEOTERM board. This
allows simultaneous displays of 24 lines of text, each
line containing 80 characters, and full high resolution,
color graphics or another 24 lines of text, each line
containing the Apple II standard of 40 characters.

The large chip in the middle of the board is the
CRT Controller (CRTC) chip. Above it is the EPROM
(erasable programmable read—only memory chip) which
contains the current Optional character set which the
board may display. By switching this EPROM with another,
the optional character set nay be changed. The board
comes equipped with the standard ASCII character set in
a second EPROM located below and to the right of the
long CRTC chip. The Character Generator chip, located
above the CRTC and to the right of the optional
character set EPROM, does the actual work of creating
the display character. The VIDEOTERM board is described
more fully in the Hardware Operation chapter starting at
page 6—1. A labelled photograph and a complete board
schematic drawing are included as Figures 10 and 11,
respectively.

At the bottom right of the board, a part of the
board protrudes and has many parallel electrical
contacts printed on it. This is the expansion slot
interface connector. It is this part of the board

1—4

which will be pushed into the Apple II’s expansion
bus slot to install the VIDEOTERM. You should avoid
touching the connectors with your fingers as this
may impair the quality of electrical contact. In
general, hold the card by its edges when examining
it and grasp it firmly by its upper corners when
installing or removing it from the Apple II.

1—5

VIDEOTERM Features

The VIDEOTERM Board offers you a great many
features, some of which are only found on more
expensive video display terminals. A complete list
of all features is given below. At the end of each
description, a manual page reference is given so
that you may immediately read more concerning that
feature. This allows you to use this section as a
cross-index to the more detailed instructions and
information which follow.

<1> 80 Character columns by 24 character
lines are displayed at once. The number
of lines is changeable to 18. You will
definitely want to use the 18 line mode
if you have purchased the optional 7 by
12 character matrix EPROM (pages 3.~3 to
3—4).

<2> Text is printed in upper and/or lower
case at your discretion (page 3—5). All
96 ASCII display characters are
available, as are some of the control
characters and a set of graphics
characters (Table 2, page 3—4).

<3> All text character entry is done directly
using the Apple II’s keyboard. A

 “CTRL—A” keystroke sequence is used to
shift from upper to lower case, and from
lower to upper case (page 3—5). Lower
case letters are Stored internally as
true lower case and do not have a
“CTRL-.A” embedded with them. Alternate
entry keystroke sequences are needed to
access some of the VIDEOTERM~ features.
These are all fully defined herein (pages
3—6 to 3—10).

1—6

<4> You have direct screen cursor control in
Apple’s Basic languages using the
familiar ESCape key sequences (pages 3—8
to 3—9). In Pascal, cursor control is
the same as the Pascal defaults and may
be controlled using GOTOXY (pages 3—9 to
3—10 and 4—28).

<5> The VIDEOTERM board is completely
compatible with Pascal. You will not
need any software ‘patches’ to make the
board work right the first time, every
time (page 4—4). Applesoft Basic and
Integer Basic usage requires some slight
modification to existing user programs
and some precautions in writing new
programs that access the VIDEOTERM, but
these are well—defined and have been kept
to a minimum. Such constraints are fully
described (pages 4—2 to 4—4).

<6> Both Basics are listed on the VIDEOTERM
using all 80 columns. Keywords are not
split and you may start or stop listings
by using the “CTRL—S” entry just like the
Apple Autostart RON (page 3—8).

<7> The VIDEOTERM board generates an almost
immediate response to all inputs. The
effective transfer rate between the
computer and the display is extremely
high, approximately 12,000 BAUD. Speed
is enhanced because there is no need to
encode the signal into a standard
parallel or serial interface format. A
very quick screen response is evident in
all text printing and scrolling.

<8> The VIDEOTERM board follows all OEM
specifications as issued by Apple
Computer, Inc. This guarantees that your
board will be fully compatible with all

1—7

current and future Apple II peripherals
(pages 3—1 and 4—30 to 4—33). The
economy minded design of the board
ensures that the VIDEOTERM board power
draw will be low, further reducing
peripheral conflicts.

<9> The board is compatible with the Apple
Serial Interface board, the CCS
Asynchronous Serial Interface board, the
D.C. Hayes Micromodem II (using optional
customized firmware available from
VIDEX), the Microsoft Softcard, and many
other peripherals that allow interaction
with a video display terminal (page
4-33ff) VIDEOTERM is compatible with
the EasyWriter Professional Word
Processing System, the Apple PIE editor
and other word processors available for
the Apple II (page 4—30). With only
slight modifications, you will find that
most software will work excellently with
the VIDE0TERM. And the board is
compatible with the VIDEX KEYBOARD
ENHANCER, allowing direct lower case text
entry from the Apple II keyboard (pages
1—11).

(10> The VIDEOTERM board allows you the option
of displaying, either through keyboard or
software control, a set of user defined
or predefined graphic character sets, in
addition to the standard 96 ASCII display
characters. Although more limited than
the Apple high resolution graphics, many
interesting graphical displays can be
generated in this fashion. Using the
Mountain Hardware R0MWriter (or other
EPROM programmer) the user can create any
desired graphical or character set (page
4—35ff).

1—8

<11> VIDEOTERM in no way interferes with the
memory—mapped graphics display of the
Apple IT itself (page 5—12 to 5—14). You
may thus generate graphical output on
either of the two high—resolution
graphics pages, or display text data on
the direct Apple II video monitor and
also have a full page of text and/or
VIDEOTERM graphics symbols displayed on
your black and white monitor.

<12> Optional hardware modifications may be
made to the VIDEOTERM. These allow use
of a 2708, 2716 or 2758 EPROM for the
optional character set, setting the
entire screen to inverse video (black
characters on a white field), or using
the characters eighth bit to invert that
one character (the cursor is lost in this
last option). These hardware
modifications are simple and fully
described herein (pages 6—4 to 6—8).

<13> The VIDEOTERM cursor is fully
programmable in size and may be set to
flash at one of two different rates (page
5—8).

<14> You may simultaneously display on the
VIDEOTERM text that is being sent to a
printer (pages 4—9 to 4—13). This
software may be modified to allow y o u
to examine what your printer will print
before actually doing so.

1—9

Apple II Hardware Prerequisites and Options

To fully use all the features and capabilities
of the VIDEOTERM board, you Should have the
following pieces of equipment. However, any Apple
II or Apple II Plus with at least 16K of RAM will
work, even if the VIDEOTERM~ is your only Apple II
peripheral.
(1) An Apple II or Apple II Plus, with at

least 16K of Random Access Memory.

(2) A black and white video monitor. We have
found the Leedex video-100 monitor and
the Sanyo monitor to be excellent
monitors for use with the VIDEOTERM. Any
monitor that can handle at least a 12 mH
bandwidth is acceptable. We have even
heard of use of the VIDEOTERM with a TI
Color monitor, but the use of Color
monitors is not recommended.

(3) Optionally, an RF Modulator linked to a
Color TV to use for graphics displays,
additional text displays and as the
monitor when the system is first turned
on.

(4) Optionally, at least one, and as many as
six, disk drives for full system
utilization.

(5) Optionally, an Apple Language card. The
80 character per line VIDEOTERM screen
display format is especially useful with
Apple Pascal (or the Softcard).

(6) Optionally, a VIDEX Switchplate assembly
may be added to allow easy use of a
single monitor for both Apple II Standard
video output and VIDEOTERM~ output.

1—10

(7) Optionally, a VIDEX KEYBOARD ENHANCER for
full text entry, both upper and lower
case, direct from your Apple II keyboard.
This allows access of nine new characters
and operates in three different modes.

(9) Optionally, a ROMWriter or other EPROM
programmer for creation of user defined
character and graphic sets.

1—11

INSTALLATION AND CHECKOUT

How to Install the VIDEOTERM Board

The VIDEX VIDEOTERM consists of two parts: the
VIDEOTERM board itself and a connector from the
board to the video monitor. An optional product,
called the VIDEX Switchplate assembly is also
available. The VIDEX Switchplate assembly has its
own attached jumper cable that replaces the simple
standard connector. If you have installed various
Apple II peripherals before, then you should scan
these instructions, examine the photographs, follow
the checklist at the end of this section as you
install the board, and then proceed directly to the
Checkout section, page 2—9. If you have never
installed a peripheral card in the Apple II
expansion slots, then carefully read the following
explanation through completely at least twice before
attempting the installation. After the detailed
explanation, there is a short checklist, page 2—8,
to follow when installing the board.

To orient you as to how the board appears when
installed, a photograph of the completed
installation is included as Figure 1. The view
shows the inside of the Apple II with the completed
installation, including the Switchplate. Examine
these photographs carefully before installing the
board and again after installation but before
turning on your computer’s power switch.

VIDEX CAN ASSUME NO LIABILITY OR RESPONSIBILITY FOR
DAMAGES CAUSED BY INCORRECT VIDEOTERM INSTALLATION!

So please double check all connections before
you power up the system.

In the following instructions, it is assumed
that you are seated at your Apple II, with the

2—1

keyboard directly in front of you as if you were
about to type. You should clear the top of the
Apple II so that you can easily open the computer
case and install the board.

(1) Turn the power switch OFF. The power switch
is located at the rear of the Apple II near
the power cord connector. It is imperative
that this be done, as permanent damage may be
done the VIDEOTERM board, the Apple II
Motherboard and/or any of the other peripheral
boards that may be plugged into the expansion
bus at the time. It is much more safe and
sure to also completely detach the power cord
from the Apple II. That way, it is impossible
to accidently have power supplied to the
computer before you are ready.

(2) Remove the cover from the Apple II. Grasp the
cover under its rear lip at each corner using,
one hand at each corner, and pop the cover
loose from its fasteners. Then pull the cove

Figure 1: Board Installed in System: Interior View

2—2

directly out toward the rear to avoid possible
prying on the keyboard. When the cover is
free, lift and remove it from the Apple II.

(3) Inside, covering almost the entire bottom of
the computer case, is the green PC Motherboard
of the Apple II. Across the rear of the
Motherboard is a row of 8 connectors or
expansion slots. It is into one of these
slots that you will install the VIDEOTERM
board. The leftmost slot is slot #0 and the
rightmost slot is #7, with the other slots
numbered sequentially between the two. Slot
#0 should contain your Basic firmware card,
containing either Applesoft or Integer Basic,
or the Apple Language card. Slot #6 should be
reserved for use with the Apple Disk II
controller card. The VIDEOTERM board may go
into any of the other slots, but it is
strongly recommended that it be placed in slot
#3, as this is the slot that Pascal expects a
terminal to be located in. Standard Apple II
software will undoubtedly be written with this
consideration in mind, so it is probably best
just to use slot #3 right from the start.
However, there is no penalty for not using
this slot and complete information regarding
use of the other slots is given herein. All
examples will assume that the VIDEOTERM board
has been placed in slot #3.

(4) Attach the optional VIDEX Switchplate
assembly, if you have one, to the outside of
the Apple II case in one of the notches cut
into the case for that purpose. Any notch may
be used, since the connector, which will
attach to the VIDEOTERM board, is of
sufficient length to reach the board
regardless of the location of the installation
slot. To attach the VIDEX Switchplate
assembly, loosen the two screws (you should

2—3

not completely remove them as this will make
installation a little harder), separate the
two PC boards of the assembly and slip the
assembly into a notch. The plate of the
assembly which has the switch and two video
I/O ports should go on the outside while the
board with the VIDEOTERM connector should go
on the inside. Orient the Switchplate
assembly so that the ports are on the bottom
and the switch is on top. Center the
Switchplate in the notch and clamp it into
place by tightening the two screws on the
Switchplate assembly.

(5) Position the VIDEOTERM board’s protruding
expansion slot interface connector directly
over the chosen expansion slot. The card
should be aligned vertically and not twisted
in any manner. Holding firmly onto the
corners of the board, push the expansion
interface connector into its slot. Check that

Figure 2: VIDEX Switchplate Assembly Mating with
the VIDEOTERN Board

2—4

the board is firmly pushed all the way into
the slot by rocking it a bit. Make sure that
the board has not been tilted down toward the
center of the Apple II, as this could result
in incomplete connections with the expansion
bus (probably with disastrous effects when the
power is turned on).

(6) Attach the enclosed connector to the five
video output takeoff prongs on the board as
shown in Figure 2 (this connector also slides
onto the light pen prong). If you have the
VIDEX Switchplate assembly, attach its
connector to the VIDEOTERM board in exactly
the same manner. The standard connector will
not be included if you have also purchased the
VIDEX Switchplate assembly. Note that the
Positioning of the 5 prongs and the design of
the connector makes it virtually impossible to
connect the two incorrectly.

(7) Attach your video monitor to the VIDEOTERM by
plugging the male end of the video monitor
input plug into the female plug on the
enclosed connector. If you have the
Switchplate assembly, plug your video monitor
male plug into the female plug on the outside
of the Switchplate assembly. It should go
into the upper of the two I/O video ports, the
one labelled M for Monitor.

(8) If you are using the optional VIDEX
Switchplate assembly, then you should use a
separate standard double—ended male RCA audio
cable to connect the lower video monitor input
port on the Switchplate assembly (labelled A
for Apple) to the Apple II’s video monitor
output port. The Apple II’s port is located
next to the cassette I/O ports on the rear of
the Apple II. Figure 3 shows the completed
assembly of the VIDEX Switchplate assembly and

2—5

its connections from a back exterior
viewpoint. Flip the switch on the Switchplate
to the right position (assuming that you are
still seated facing the keyboard) so that you
will be sending PR#0 output to your video
monitor. This will assist in checking Out the
VIDEOTERM board as you can tell if your video
monitor is working when you turn on your Apple
II. If you have Apple Language card, you need
not make this connection and you should place
the switch on the VIDEX Switchplate assembly
in the left position. Actually, if you run
just Pascal, you will not need the VIDEX
Switchplate assembly but can make do simply
with the enclosed, less versatile, standard
connector. However, you will find this less
than convenient when using either Basic
language.

Figure 3: Board Installed in System: Exterior View

2—6

(9) Carefully replace the Apple II cover. At the
same time, press down firmly on both rear
corners of the lid to resecure it.

(10) Reattach the power cable and turn on the power
switch located on the back of the Apple II.

2—7

Installation Checklist

You are now ready to proceed to the Checkout
section, page 2—9. To assist you in the actual
installation, you may wish to use the following
outline as a checklist.

(1) Turn OFF the power switch and unplug the power
cord.

(2) Remove the cover.

(3) Insert the VIDEX Switchplate assembly, if you
have it, into a notch and tighten its clamp.

(4) Insert the board into the chosen expansion
slot.

(5) Attach the enclosed connector to the 5 takeoff
prongs on the board. If you have it, attach
the VIDEX Switchplate assembly’s connector to
the VIDEOTERM board instead of the connector.
(Note that the standard connector is not
included if you have purchased the VIDEX
Switchplate assembly.)

(6) Connect your video monitor input plug to the
appropriate output plug depending on your use
of the enclosed connector or the VIDEX
Switchplate assembly.

(7) Connect the Switchplate assembly to the Apple
II’s video monitor output port using a
separate double—male audio plug. Place the
switch in the right position (left if you have
Pascal).

(8) Recheck all connections. Replace and resecure
the cover.

(9) Plug in the power cord and turn on your Apple
II!

2-8

Checkout

 Naturally, the first thing that you will want
to do is verify that the VIDEOTERM board is working
correctly and that all of its features operate as
described. This section will tell you how to make
sure that the board is operating normally, make
minor adjustments and fix minor errors, or diagnose
serious hardware problems which would justify
contacting us. All boards are tested before sale,
but problems can arise with anything, electronic or
otherwise.

A. how to Verify Correct Performance

 Verification of board performance will be
discussed by type of Apple II system configuration.
We need to discuss each language and how the
Autostart ROM presence or absence affects the
checkout. We will start with a standard Basic Apple
II system utilizing one of the two Basic languages.
Before we try the board using one of the Basics,
however, we will use the Apple II Monitor to do some
initial adjustment.

 When you turn your system on, it should beep
and fill the screen with question marks and/or other
symbols and an asterisk with a flashing square
cursor next to it will appear near the lower left
corner, indicating that you are in the Apple II
Monitor. The Monitor’s capabilities are described
at length in the Apple II Reference Manual. Suffice
it to say here that the Monitor is very powerful and
you may adequately verify the VIDEOTERM board’s
correct response from here with a few simple tests.

 If you have the Autostart—ROM installed in your
Apple II, the probable conditon with the Apple
II—Plus, you will see

APPLE II

2-9

at the top center of your screen. If you have the
Disk II system, it will automatically be turned 01
and a copy of the DOS will be written into your
Apple’s RAM. Your “HELLO” program that you “INIT”ed
the diskette with will be loaded and run. Without
the Disk II peripheral, your computer will simply go
into either the Applesoft or Integer Basic language
depending on which language is set as the default.
(The default language is the one in the Apple II ii
its Motherboard sockets $D8 to $F8, or on your
Applesoft or Integer Basic card depending on it's
switch position.) Once you are in either language.
type

CALL —154 (CR)

and you will be placed in the monitor mode.

If you have the standard Monitor ROM
initialize your disk operating system (if you have
one), as this will make some of our later tests a
little faster. You do this, of course, by typing “6
CTRL—P”, where the hyphen indicates that you
hold the Control key while depressing the P key.
Naturally, you will terminate all your responses to
the Apple II by striking the Return key. After your
disk drive finishes whirring, return to the Monitor
by pushing the Reset button.

Now, no matter your system configuration using
the Basic languages, you are ready to activate the
VIDEOTERM board. Type “3 CTRL—P”, if you have the
board in slot 3. If not, type “n CTRL—P”, where n
is the number of the slot that you have placed the
board in. Flip the switch on the VIDEX Switchplate
assembly to the left position. Asterisk should be
visible on the left side of the monitor display with
a flashing cursor next to it. Reenter either Basic
by typing

*3DOG (CR)

2—10

and ask for a “CATALOG”. If you don’t have a Disk
II system, then reenter either Basic by typing
“CTRL—B” and fill the screen with caracters
bydepressing any alphanumeric key and, while
depressing it, hold down the Repeat key for a few
seconds. You might want to pause at this time and
fine adjust your video monitor since your screen
should now be almost full of characters. (With Disk
II, try to CATALOG a full diskette so that you can
see characters down the entire left side of your
screen.) If everything is proceeding smoothly, load
and list a Basic program. If you have both versions
of Basic installed, try typing “FP” or “INT” as
appropriate, and loading and listing a program in
the other language. If you don’t have the Disk II
system, then you can change Basic languages by
typing

>POKE —16256,0 (CR) (Integer)
?OVERFLOW ERROR IN 60908 (or similar error

message will appear on
screen)

*“CTRL..B” (CR) (Enter Applesoft)

or
POKE 49280,0 (CR) (Applesoft)
*“CTRL..B” (CR) (Enter Integer Basic)

which will work with or without the Autostart—ROM.
Note that “CTRL—B” should not be typed literally,
but means that you should strike the B key while
holding down the Control key.

If you have a problem at any time, refer first
to the Video Monitor Adjustment section, page 2—13,
and then proceed to the Fault Diagnosis section,
page 2—16 if your question still has not been
answered. If everything has been verified, then you
may proceed to the Operation section, page 3—1
below.

2—11

If you are lucky enough to have either the
Apple Language card or the Microsoft Softcard, you
will especially enjoy the convenience of the full 80
character wide display and soon be making full use
of the lower case capabilities. It is very
important that you place the board in slot 3, as
this is the normal terminal display interface slot.
As explained above, you will not need the VIDEX
Swltchplate assembly for exclusive Pascal use of the
VIDEOTERM board, although it is convenient to have
it so that you can use more than one monitor at a
time. If you do have the VIDEX Switchplate
assembly, make sure the switch is in the left
position. Go ahead and activate your system by
turning on your Apple II. If by chance you have
replaced the Autostart ROM with its non—Autostart
brother, then you will have to type “6 CTRL—P”. You
should see the Pascal announcement in the center of
your screen. Proceed to the Video Monitor
Adjustment section, page 2—13, until you do have the
display.

As soon as you have the Pascal menu prompt line
showing, go ahead and try asking for a directory.
Feel free to try editing any of your programs.
You’ll be amazed at the different look your programs
and text will have. If you have any difficulties,
reread the Video Monitor Adjustment section, page
2—13.If all else fails, consult the Fault
Diagnosis section, page 2—16.

2—12

B. Video Monitor Adjustment

Let us start with the worst possible case and
work toward less dramatic problems.

<1> No picture at all: Always begin by checking
what is simplest to fix and usually makes you
feel the dumbest. Is the TV monitor turned on?
Is it plugged into the power outlet? Do you
know that the video display works? Could
it have burned out tubes? Carefully recheck
the connections associated with the board,
being sure to turn off the Apple II before you
do any radical wiggling of the board. Are the
connections as described in the section on How
to Install the VIDEOTERM board, page 2—1? Is
the switch in the correct postion on the VIDEX
Switchplate assembly? Are all the connections
tight? If everything is OK, you should be
seeing something on the video display. If the
screen is obviously on but you cannot see
anything, Proceed to the next Possibility.

2—13

<2> No visible characters: This is probably due
to the screen contrast and brightness controls
being slightly out of adjustment. Turn both
the contrast and the brightness controls up
and see if you notice anything. The next
possibility is that the display is shifted
slightly off the screen. Look for the
horizontal and vertical hold adjustments,
which should he located on the front of your
monitor. Try twisting each of these slightly
in either direction. You should be able to
see some type of signal being displayed. Use
these two controls to steady and center the
display. Once the screen is filled with
characters, you might notice that the ones at
the top are slightly larger or smaller than
the ones at the bottom of the screen. Quite
often black and white monitors will have a
vertical—size, vertical—line (or linearity)
and horizontal width adjustment controls.
Usually, these controls will be on the back of
the set. Infrequently, they are located
inside the cabinet. You should not try to
open the cabinet to adjust them, unless you
are qualified in servicing TVs. By adjusting
these controls, you should be able to obtain a
uniform character image over the entire
display.

<3> Persistent rolling: Use the vertical hold
adjustment. If you can not correct this,
consult the Fault Diagnosis section, page
2—16.

<4> Bent characters: Try adjusting the horizontal
hold adjustment control very slightly in both
directions. This problem usually occurs on
the top line of the screen.

<5> Uneven sized characters: Usually caused by
incorrect adjustment of the vertical linearity

2—14

control. Try varying the setting of it

slightly in each direction.

<6> Indistinct or fuzzy characters: This can

usually be corrected by adjusting the focus,

fine focus, brightness and/or contrast

controls. Characters may be distinctly

smeared if your monitor is not terminated with

75 ohms of impedance or if the input gain is

too high.

<7> Overall pointers: One thing to check if you
are having problems is the resistance setting
on some monitors. The 75 ohm setting should
be used. Some monitors have a focus
adjustment and this can be used to sharpen or
clarify the image. Dont be discouraged.
Patiently try various combinations of settings
without radically changing anything. You
should soon have a clear picture. If you are
still having problems, perhaps a friend or the
dealer that you bought the board from could
help you. If all else fails, please feel free
to contact VIDEX directly and we’ll be happy
to try to help you solve the problem.

2—15

Fault Diagnosis

If you are using a standard black and white TV
set, we suggest that you modify the TV for use
strictly as a video monitor. Don Lancaster’s The
Cheap Video Cookbook (Howard W. Sams & Co.,
Indianapolis, IN, 1978) contains the information
needed for this transformation on pages 148 to 150.

Our extensive testing of the VIDEOTERM and our
experience based on direct feedback after thousands
of user hours has convinced us that the VIDEOTERM is
generally quite error free. If you suspect a
hardware problem, go to your local Apple dealer and
ask him to briefly test the various Integrated
Circuits on the VIDEOTERM. This can be done by
simply swapping in new ICs, an easy task since all
ICs are fully socketed and not soldered in place. A
bad IC will be at the root of most problems.

Also, have your dealer check the various solder
blob connections described in Optional Hardware
Modifictions, starting on page 6—4. The solder
points Xl and X2 should match the IC U5 (see Figure
10) specification, X3 and X4 must match the choice
of 2708 or 2716 EPROM, and X5 must match with X6.
X7 will be set as normal video when you receive the
board. These connections are illustrated in Figure 9
of that section.

In the rare event that your dealer cannot
diagnose and correct the fault, return the board
postpaid directly to VIDEX in Corvallis, Oregon, for
prompt servicing.

2—16

OPERATION

Using the VIDEOTERM Board

For those of you who have owned other Apple II
peripherals, or Apple compatible peripherals, you
will find that the board acts exactly as you would
expect when you use the PR#n command (where n is the
slot number) to direct printed output to the video
display screen instead of the normal PR#O screen.
The board uses the reserved locations for peripheral
boards in the Apple’s Random Access Memory. These
slot dependent location addresses are given in both
hexadecimal and decimal notation, along with their
usage, in Table 1.

If this is your first Apple II peripheral, you
will find it amazingly easy to operate. When you
turn on your system, you merely type “PR#3”,
assuming you have installed the board in slot 3
(PR#n for slot n), and you will see the asterisk,
Applesoft or Integer Basic prompt, or the Pascal
menu prompt line on the video monitor display
screen. You then proceed to use your computer
normally, but now you have available, at your
fingertips as it were, some powerful new
capabilities.

It should be noted that the VIDEOTERM board only
uses a few locations in the Apple II’s memory. The
screen display is memory—mapped out of RAM which is
located on the VIDEOTERM board itself. As the Apple
II memory addresses used are set aside for that
purpose by Apple itself, you are able to use the
VIDEOTERM board and have no memory use conflicts
with any of your programs, any software that you may
have purchased, or with any other peripheral that
you may have which has also followed Apple’s OEM
guidelines.

3—1

Table 1
VIDEOTERM Use of Apple II RAM

 Addresses used are relative to the slot used
or the VIDEOTERM board. Slot n is the slot
the board has been placed in. See page 134
in the Apple II reference manual for the sets
of addresses available as scratchpad Random
Access Memory locations.

Description Hex Addr Dec Addr

Screen Base addr. (low) $478 + n 1144 + n
Screen Base addr. (high) $4F8 + n 1272 + n
Cursor horiz. position $578 + n 1400 + n
Cursor vert. position $5F8 + n 1528 + n
Pascal char. write loc. $678 + n 1656 + n
First line on screen $6F8 + n 1784 + n
Power off/leading counter $778 + n 1912 + n
Video set-up flags $7F8 + n 2040 + n

The first two storage locations are used to
store an address of a location in VIDEOTERM's
on-board RAM. This address is where the
first character in the line currantly being
edited/listed is stored. This address will
be $000 $7FF, inclusive.

The cursor horizontal position is the currant
column location of the cursor (0-79,
inclusive, from left to right). The cursor
vertical position is the currant line
location of the cursor (0-23, inclusive, from
top to bottom), The Pascal write character
location is where the Apple Pascal system
looks to find the next character to send to a
terminal or other peripheral. The first line
on screen pointer is used in text scrolling.
The various video set-up flags are discussed
in the software section, page 5-9.

3-2

VIDEOTERM Initialization

 When you first activate the VIDEOTERM board
with the "PR#3", or when you reset the board to its
standard default, you will see 80 characters per
line and 24 lines per page or screen, with each
character defined by a 7 by 9 matrix within a total
8 by 10 matrix cell, allowing for a slight border
around the character.

 To change this, simply type "CTRL-Z <params>"
where you substitute one of the paremeters listed in
Table 2 for the angle brackets and their contents.
(Pascal users will need to write a short program to
send this character sequence to the VIDEOTERM.) For
example, if you wanted to use the alternate character
set, you would type "CTRL-Z 3". Presto-chango, as
they say, and there it is. You should try each of
the options and then type a little to observe the
different display responses you achieve.

 Before we continue, let mention a unique
feature of the VIDEOTERM board. Try using the entry of
"CTRL-Z" followed by any control character H
through O. You will notice that when you type the
control character, you will see displayed the
correct ASCII abbreviation for the action. For
example, when you type "CTRL-H" (or the back arrow),
you will see"BS" displayed as two tiny
diagonal-spaced capital letters in the position of
one normal display character.

Return to the Apple Display

 When you enter the VIDEOTERM WITH THE "PR#3"
statement, the Apple automatically issues a "IN#3"
command. However, when you enter "PR#0", THE
VIDEOTERM will not reset the "IN" switch by itself.
You should thus always follow this command with
"IN#0"

3—3

Table 2
VIDEOTERM Control Parameters

 The VIDEOTERM board starts in upper case mode.

CTRL—Z
Followed by: Description

0 (Default) Clears screen and
sets for 24 lines of text

1 Clears screen and
sets for 18 lines of text

2 Selects the standard 7x9
character set (or selects
for normal video, see
page 6—4) for subsequently
displayed characters

3 Selects the alternate
character set (or selects
for inverse video, see
page 6—4) for subsequently
displayed characters

CTRL—@ to Displays one of the set of
CTRL—G low—resolution graphics

characters
CTRL—P to Displays one of the set of
CTRL—SHIFT—0 line drawing graphics

characters
CTRL—H to Displays small abbrevia-
CTRL—O tion of ASCII function

(i.e., CTRL—H shows BS
for Backspace)

Character Displays that character

Low—resolution graphics characters: each occupies
one character position on the screen display

3—4

Upper and Lower Case

You will, of course, want to use lower case
right away and no wonder. Lower case is
significantly easier to read and recognize than is
all capital type, reducing eye strain and reading
time, When you first activate the VIDEOTERI4 board,
it will still be in all upper case. To place it in
lower case, simply type “CTRL—A”. This acts just
like a toggle switch or flip—flop in that you are
now in lower case mode for as many characters as you
wish to type. That is, the next character and all
following characters will be uncapitalized.

To do a shift lock, so that you are returned to
upper case, type another “CTRL—A”. You have flipped
the switch, so to speak, and each time that you
enter the “CTRL—A” you will go into the mode that
you are not currently in. This method of operating
the upper and lower case modes is fairly convenient
except in the case where you wish to capitalize only
the next character. At present, the only way to do
this fr,om the keyboard is by typing a sequence such
as “CTRL—A Q CTRL—A UITE” to obtain the display
‘QUite’. Installation of the VIDEX KEYBOARD
ENHANCER will solve this problem, as it allows the
use of the shift keys in a manner exactly like that
of a standard typewriter keyboard. Note that the
lower case characters are stored internally as true
lower case. The “CTRL—A” is NOT stored.

3—5

Special Key Operation

Most keys will display just as they are typed.
However, certain keystroke sequences utilized in
conjunction with the Control key, have specific and
standard results. These various sequences will be
discussed here in detail. In general, they will
work the same in all Apple languages, so that by
printing that keystroke character sequence to the
VIDEOTERM board you will obtain the desired result.
Notice that you will not be able to enter all of
these directly from your keyboard without the VIDEX
KEYBOARD ENHANCER.

As a special note, both the “CTRL—A” and the
ESCape key sequences are “swallowed” by the
VIDEOTERM board and are not transferred to the Apple
II input buffer. All other special key sequences
are transferred into the buffer.

CTRL—A: Shift Toggle. The typing of the “A” key
CHR$(1) while holding the Control key down toggles

the VIDEOTERM into the other case mode.
Thus, if you are in upper case, you will be
shifted to lower case, while if you are in
upper case you will be shifted to lower
case. The case mode remains unchanged
until another “CTRL—A” is issued. The
“CTRL—A” is not entered into a line of text
when typed in from the keyboard. It serves
only as a shift toggle.

CTRL—G: Sound the Bell. The typing of the “G” key
CHR$(7) while holding the Control key depressed

causes the bell to be sounded. Doing this
from the Apple II keyboard directly will
cause the computer to sound a small beep
from its internal speaker. Try this with
tbe VIDEOTERM board active and with it
inactive (i.e., try it before and after you
type “PR#3”). The bell will have a

3—6

different sound when you have the VIDEOTERM
board activated to let you know that it is
currently on.

CTRL—H: Non—destructive Back Space function. This
CHR$(8)operation forces the cursor back one

character on the display without destroying
the character displayed at the previous
location. The “CTRL—H” acts exactly like
the single key on the Apple II keyboard
labelled with the arrow pointing to the
left (found just under the Return key on
the right side of the keyboard).

CTRL—J: Line Feed function. This operation causes
CHR$(1O) a line feed to be issued which forces the

cursor down to the next line without
changing the column position of the cursor.
At the bottom of the screen, this will
cause the text to be scrolled up one line
so that the page display will be altered.
A Carriage Return will also have a line
feed associated with it.

CTRL—K: Clear to End of Screen function. This
CHR$(11) operation will clear the text from the

present cursor location to the end of the
screen. The character at the cursor
location will also be deleted but the
cursor itself will not move.

CTRL—L: Form Feed function. The issuance of a form
CHR$(12)feed command will clear the screen entirely of

all information displayed, just as if
you had ejected a page and started a new
one with a printer. This does not destroy
any information stored internally in your
Apple’s RAM, but rather simply starts a new
screen. It is important to note here that
the “HOME” command in Applesoft and the
“CALL —936” statement in either language
MUST be replaced with a “PRINT CHRS(12)” in

3—7

Applesoft or “PRINT <CTRL—L>” in either
language. See the Apple Language
Interactions section in the Software
chapter, pages 4—1 to 4—6.

CTRL—M: Carriage Return function. In Pascal, this
CHR$(13)operation will move the cursor to the

leftmost column on the screen without
changing its line position. In either
Basic language, an automatic Line Feed
function (CTRL—J) is also performed at the
same time.

CTRL—S: Stop/start text scrolling. This ASCII
CHR$(19) control character will cause the current

text scrolling operation to stop, freezing
the display. Text scrolling can be resumed
by typing another “CTRL—S” (or any other
character).

CTRL—U: Copy character function. This operation,
CHR$(21) in either Basic, causes the cursor to be

advanced one position, copying the
character that it was positioned at into
the input buffer of the Apple as if it had
just been typed from the keyboard. The
right arrow, located on the right of the
keyboard just under the Return key,
performs the same function. This will only
work with direct keyboard or program input
utilizing the CETLN routine, pages 33—34 of
the Apple II Reference Manual. This will
not work with the “CET” statement.

CTRL—Y: Home the cursor. This operation causes
CHR$(25)the cursor to be positioned in the first

row, first column without changing the
display. It is not the same as the Form
Feed function described above.

CURL—Z: Initialization Lead—in function. Use
CHR$(26) as the lead—in character for reinitiali—

3—8

zation of the VIDEOTERM. The user may
choose 18 or 24 lines of text, standard or
alternate character sets, display of a
control character or normal or inverse
video utilizing this function. See Table
2, page 3—4, for a fuller description.

ESCAPE: Edit Control Lead—in function. The ESCape
CHR$(27) key works exactly as it does for the Apple

II standard video display. It is used as
the lead—in character for an editing
command. Follow the ESCape key entry with
any of the standard editing keystrokes.
These include:

A —— Advance cursor
B —— Backspace cursor
C —— Move cursor down a line
D —— Move cursor up a line
B —— Clear to end of line
F —— Clear to end of screen
@—— Clear screen

Note that many of this ESCape key sequences
are the same as other Control key sequences
mentioned above. Also note that the ESCape
key sequences utilizing ‘I’, J’, ‘K, and
‘M’ that are available with the Autostart
ROM are not usable with the VIDEOTERM.

CTRL—SHIFT—L: Non—Destructive Forward Space Func—
CHR$(28) tion. This operation moves the cursor

forward one character on the display
without actually copying the character at
its previous location to the input buffer.
You will not be able to enter this key
sequence directly from your keyboard unless
you have the VIDEX KEYBOARD ENHANCER
installed. Both the Control and the Shift
keys must be depressed before striking ‘L’.
You will still be able to use this Function
from Applesoft.

3—9

CTRL—SHIFT—M: Clear to End of Line function. This
CHR$(29) operation erases all characters From the

current cursor location to the end of the
present line. Both the Control and the Shift
keys be depressed before you strike the ‘N’
key. Otherwise you will cause a Carriage Return
(CTRL—M) to occur.

CTRL—SHIFT—N <x> <y>: Cursor Positioning function.
CHR$(30) This operation is equivalent to the ASCII

code GOTOXY. It allows you to directly
move the cursor to any specified position
on the screen. It is completely compatible
with the Apple Pascal COTOXY function. You
follow the “CTRL—SHIFT—N” entry with two
numbers which specify the x and y (or
horizontal and vertical) screen location
that the cursor is to be relocated at. The
x and y coordinates are entered as ASCII
code sequences above decimal value 32. Try
sending various codes to the VIDEOTERM
using this function and observe the
movement of the cursor in each of the
different character cell matrix sizes.
Start with “CTRL—SHIFT-N & *“ as a start.
The upper left corner of the screen is ‘ ‘
and ‘ ‘ (two spaces). The lower right
corner of the screen is ‘7’ and ‘o’.

CTRL—SHIFT-0 Reverse Linefeed Function. This
CHR$(31)operation forces the cursor up one line

without changing its column location. Once
the cursor reaches the top of the screen,
it will not move anymore. Again, you will
need the VIDEX KEYBOARD ENTIMICER in order
to enter this key sequence directly from
your keyboard. It is still available from
Applesoft.

3—10

SOFTWARE

Now that you have your VIDEOTERM installed and
you are satisfied that the monitor is properly
adjusted, you are probably very anxious to use it.
In the previous chapter you have seen how various
key sequences are used to control the VIDEOTERM
directly from the keyboard. This chapter contains a
number of sample programs, in each of the Apple II
languages, to acquaint you with software control of
the board. But first we will detail a few necessary
changes that you will need to make to some of your
existing programs In order to use them with the
VIDEOTERM. And we will give the language specific
addresses necessary for modifying the VIDEOTERM's
internal registers, which are described in the next
chapter, starting on page 5—2. We will then
describe the use of the VIDEOTERM in conjunction
with some other available Apple II peripherals, in
particular the use of the ROMWriter to create a new
character set.

Apple Language Interactions

The VIDEOTERM has been designed to minimize the
interaction it has with user software.
Unfortunately, there is some, interaction and you
will need to make some slight modifications to your
current programs, and avoid the use of certain
programming statements in the software that you
write. This section fully documents those changes.

A. Assembly Language

The only real restriction in Apple Assembly
language is to not use those RAM locations,
described in Table I, page 3—2, which the VIDEOTERM
uses. This is true regardless of which peripheral
you purchase, as Apple Computer, Inc. has set aside
these locations specifically for firmware located on

4—1

an expansion board. Naturally, you can use these
locations either directly in Assembly language, or
from other languages, to modify the cursor location,
to modify the video set—up flags, to access the
start address, in the VIDEOTERM RAN, of the screen
start address, and many other things.

B. Integer Basic

You cannot use the “CALL —936” command. You
must substitute in its place “PRINT CTRL—L”.
Naturally, when this is listed, you will see “PRINT
“, SINCE ThE CTRL—L is not printed. You should
adopt the trick taught Disk II owners which is to
define a,, character string variable equal to the
non—printing character(s) and print that variable.
Thus

10 L$=”<CTRL—L>”:REM THIS IS CNRL—L
20 PRINT L$:REM USE THIS IN PLACE OF
ALL ‘HOME’ AND ‘CALL —936’

STATEMENTS

If you use any “CALL —958” statements, which
serve to clear the screen of text from your current
cursor position on, you will need to replace these
with “PRINT CTRL—K” statements. Use a procedure
such as that described above to enter these changes
into your programs.

If you use an~ “CALL —868” statements, which
serves to clear the present line from your current
cursor position on, you will need to replace these
with “PRINT CTRL—SHIFT—M” statements. Again, use a
procedure such as that described above to enter
these changes into your programs.

In general, you should be slightly suspicious
of any “CALL n” type statements that you use in any
of your programs.

You should also be wary of the interaction of

4—2

“PEEK” and “POKE” instructions, as these may not
work quite as you had planned. However, these
should work properly, as should your “VTAB” and
“TAB” commands. Expect some minor surprises the
first time you run some of your programs using the
VIDEOTERM.

Note that graphics statements will not work as
expected. Such statements include

CR
PLOT x,y
HLIN x,y AT n
VLIN x,y AT n

These will be sent to a separate display, such as a
color TV, if you have one attached to your Anple
video output plug separately from your VIDEOTERM.
In fact, even with one monitor, the Apple video
display is changed and can be viewed by typing
“PR#O”. Otherwise, use “REM”s to disable such
statements. There is some limited use of graphics
on the VIDEOTERM as demonstrated in the example
programs, starting on page 4—8.

C. Applesoft

Those restrictions stated above concerning
“CALL n” statements for Integer Basic also hold true
for Applesoft, and similar corrections should be
made to your programs. Of special concern is that
the Home command will not work with the VIDEOTERM,
so substitute “CHR$(12)” in its place. Note that
the availability of the “CHR$(n)” function in
Applesoft makes it much easier to print the various
character sequences that control the operation of
the VIDEOTERM.

You should not expect any of the graphics
commands to affect the VIDEOTERM, as these will
again affect only the normal Apple IT display. The
commands affected are:

4—3

GR
PLOT X,Y
HLIN X1,X2 AT Y
VLIN YI,Y2 AT X
SCRN(X,Y)
HGR
HGR2
HCOLOR=X
HPLOT X, Y
HPLOT XI,YI TO X2,Y2
DRAW n AT X,Y
XDRAW n AT X,Y

A limited usage of graphics in Applesoft programs is
demonstrated in the sample program starting on page
4—21.

The following Applesoft statements will also have
no affect on the VIDEOTERM display:

FLASH
INVERSE
NORMAL

These commands will simply be ignored when executed.

D. Pascal

Your VIDEOTERM will work immediately with the
Apple Language card, but there are a few helpful
changes you should make. After you install the
VIDEOTERM, execute “APPLE3: SETUP” and then change

HAS LOWERCASE to TRUE
Set screen width to 80

You will now get Pascal prompt lines and all
Directory and Edit lines in their full expanded 80
column format. Of course, you had a 79 column
display from the moment you initiated your Pascal
system with the VIDEOTERM. However, by setting the

4—4

screen width to SO, from 79, you will obtain longer
Pascal prompt lines.

If you want to use the regular Apple II. display
format without physically removing the VIDEOTERM from
slot 3, just

POKE(—16392+3,O)

To return to tile VIDEOTERM display

POKE(—16392+3,4)

Adjust these statements accordingly, if you have the
VIDEOTERM in some slot other than 3.

In order to implement the POKE, function, as
well as the PEEK function, use the PROGRAM PEEKPOKE
as given in Program Listing 1.

4-5

PROGRAM LISTING # 1

PROGRAM PEEKPOKE;

TYPE
TRIKARRAY — PACKED ARRAY (O..1) OF O..255;

VAR
TRIX: RECORD

CASE BOOLEAN OF
FALSE: (AODRESS: INTEGER);
TRUE: (POINTER: TRIXARRAY);

END;
I, VAL: INTEGER;
CH: CHAR:

FUNCTION PEEK (ADDR: INTEGER): INTEGER
BEGIN

WITH TRIK DO
BEGIN

ADDRESS;= ADDR;
PEEK:= POINTER^ [0];

END;
END; (Peek)

PROCEDURE POKE (ADDR. VALUE: INTEGER);
BEGIN

WITH TRIX DO
BEGIN
ADDRESS:= ADDR;
POINTER^ [O]:= VALUE;

END
END; (Poke)

BEGIN (Main program)
PAGE (OUTPUT);
WRITELN (‘Peek mod Poke tet program’, CHR(13));
WRITELN (‘Options’);
WRITELN (‘ R)esd memory address;’);
WRITELN C’ W)rite to memory address;’)
WRETELN (‘ Q)uit;');
REPEAT
WRITELN (‘Se1ect..........');
READ (KEYBOARD, CH);
CASE CH OF
‘R’: BEGIN

WRITE (‘Enter address to be examined ');
READ (I);
WRITELN (PEEK(I):10, CHR (PEEK (I)):10);

END;
‘W’: BEGIN

WRITELN (‘Enter address and value to be poked’);
READ (I. VAL);
POKE (I, VAL);
WRITELN;

END;
'Q' WRITELN (‘Thats all folks.........‘);

END;(case)
UNTIL CH = 'Q';

END.

4-6

Language Considerations in General

For the most part, you will want to know the
memory usage of the VIDEOTERM and how to perform the
various operations mentioned in the Firmware
chapter, on pages 5—1 to 5—8, in each of the various
languages. Sample statements are given in Table 3.

Memory usage in the $C080+ region of the Apple
II addressing space is also of interest. VIDEOTERM
usage o[this area is also detailed in Table 3. The
assignment of the different 16—byte address blocks
to the 8 possible expansion slots is given in Table
25, page 82, of the Apple II Reference Manual,
available from your Apple dealer. For a discussion
of the utilization of the 2K byte firmware memory
space, $C800 to $CFFF, mentioned in the Apple II
Reference Manual on pages 84—85, see the section on
VIDEOTERM Memory Napping, starting in the next
chapter on page 5—11. It might be good idea to
briefly skim through that section before reading the
detailed comments on each of the example programs.

Remember, as noted on page 3—5, that you must
execute a “IN#0” following a “PR#0” in order to
reactivate the input device correctly. Otherwise,
all Apple II display characters will be placed on
top of each other.

4—7

4—
8

Software Examples

The following program listings are offered as
examples of how the VIDEOTERM can be controlled by
one of your programs. They are not meant to be
taken as the best way to use the board, but as
indicative of what you can do. Each example will be
explained in detail so that you can see just how the
program works. Throughout the rest of this chapter,
the symbol “(CR)” is used to indicate that you
should strike the Return key.

A. Assembly Language

Program Listing 2 gives an example of how the
VIDEOTERM can be controlled using Assembly Language.
The object of the program is to allow you to view on
your monitor the same text that is currently being
listed on your printer. To enter this program, go
into the Apple Monitor by typing

CALL —154 (CR)

Then type the following (note that you do not have
to type the “*“; the Apple II displays this symbol
to let you know that it is ready for more input)

*300:48 8A 48 98 48 20 42 03 (CR)
*308:20 00 C8 A9 80 20 ED FD (CR)
*310:A5 36 8D 40 03 A5 37 8D (CR)
*318.41 03 A9 2B 85 36 A9 03 (CR)
*320:85 37 20 EA 03 68 A8 68 (CR)
*328:AA 68 60 8D 7B 06 8A 48 (CR)
*330:98 48 20 42 03 20 Cl C8 (CR)
*338:68 A8 68 AA AD 78 06 4C (CR)
*340.00 CO 8D FF CF 80 00 C3 (CR)
*348:AO 30 8C F8 06 A2 C3 8E (CR)
*350:F8 07 60 80 08 08 AO 10 (CR)

4-9

PROGRAM LISTING # 2

2 LST ON

0000: 3 *
0000: 4 BYTE E~U $678

0000: 5 NO EQO $6F8

0000: 6 MSLOT EQO $7F8

0000: 7 COOT EQO $FDED

0000: 8 *
0000: 9 ORG $300

0300: 10 082 $300

0300: 11 *
0300:48 12 START PHA SAVE REGISTERS

0301:8A 13 TXA

0302:45 14 PHA

0303:98 15 TYA

0304:48 16 PNA

0305:20 42 03 17 JSR SETREOS SET—NP FOR ENTP.Y INTO 0800 RON

0308:20 00 CR 18 JSR C00 ENITIALIZE VTDEOTERM

0308:A9 80 19 LDA 8S80 TRANSMIT FARE ONARACTER TO PRINTS

0300:20 ED PD 20 JSR COOT

0315:A5 36 21 LDA $36 STORE OLD OUTPUT VECTOR

0312: 80 40 03 22 STA J7$PADR+1 INTO A JMP OPERAND
0315: AS 37 23 IDA S37
0317: 90 41 03 24 STA JSIPADR+2

031A:A9 28 25 IDA ‘1<OUTI SET UP NEW OUTPUT VECTOR
031C:85 36 26 STA $36

031E:A9 03 27 IDA #>OUTI

0320:85 37 28 STA $37

0322:20IA 03 29 JSR $3EA SWAP IN DOS OUTPUT VECTOR
0325: 68 30 DONE PLA RECOVER REGISTERS
0326: A8 31
0327:68 32 PLA

032$:AA 33 TAX

0329:68 34 PLA

032A:60 35 RTS

032$: 36 *
0325: 80 75 06 37 OUTI STA BYTE+3 SAVE BYTE TO OUTPUT
032E: 8A 38 TXA SAVE REGISTERS
032F: 4$ 39 PHA
0330: 9$ 40 TYA
0331: 4$ 41 PHA

0332:20 32 33 42 JSR SETREOS SET—UP FOR ENTRY INTO 0800 ROM

0335:20 83 0$ 43 JSR $0813 OUTPUT BYTE TO VIDEOTERM

0338:6$ 44 PLA RECOVER REGISTERS

0339:A8 45 TAY

033A:68 46 PLA

0338: AA 47 TAX

0330:AD 7$ 06 48 IDA BYTE+3 OUTPUT BYTE TO PRINTER

033F:40 00 CO 49 JNPADR DSP $CODO THIS ADDRESS WELL SE CHANGED

0342: 50 *
0342:80 PP CF 51 SETREGS STA $CFFF TURN OFF CO—RESIDENT ROMS

034$:80 00 03 52 STA $C300 SELECT CO—RESIDENT POll IN SLOT 3

0348:AO 30 53 IDY #$30 SET UP THE NO INDEX

034A:BC F8 06 54 STY NO

0340:A2 03 55 LOX #$C3 SET UP THE ON INDEX

034F:88 P8 07 56 SIX MSLOT

0352:60 57 ITS
3353:

4—10

When you have finished entering these values, type

*300.357 (CR)

This will cause a copy of what you have entered
above to be displayed on your video screen.
Carefully double—check your entry to make sure that
it is the same. You can also type

*300L (CR)

This will cause the Apple to display a listing like
that in Program Listing 2, except that no comments
will be written by the Apple II disassembler. To
continue the listing, type

*L (CR)

Repeat this last entry once more to finish your
listing. The important entries are the actual
hexadecimal operation codes that are displayed to
the left of the Assembly language operation codes,
since some of the symbols, such as COUT will not be
displayed.

There are several alterations you will have to
make if you have installed the VIDEOTERM in some
slot other than 3. Substitute

*347:Cn (CR)
*34E:Cn (CR)

WHERE N IS THE SLOT NUMBER IN WHICH THE VIDEOTERM
has been placed. Also

*349:<8+n>O (CR)

is necessary. Note that BO would be entered if in
slot 3, CO if in slot 4 and so forth.

Notice the two instructions using “BYTE+3” in

4—11

the listing at locations $32B and $33C,
respectively. These must be changed to the
equivalent of “BYTE+n”. Do this by using Table 1 to
calculate the new value to be placed at locations
$32C and $33D. Note that the same values will be
placed in each location. Assuming that the
VIDEOTERM has been placed in slot 5, then we would
calculate

$678 + n = $678 + $5 $67D

and we would type

*32C:7D (CR)

*33C:7D (CR)

This completes the necessary changes in the program
for use with the VIDEOTERM’s changed location. You
should save this routine onto your diskette or
cassette. The routine starts at $300 and has a
length of $58.

In order to use the routine from either Basic
language, enter the following into your program

PR#p:CALL 768

where p is the slot number that your printer is in
(also true below).

In order to test the program, simply enter the
one—line program (again, using either Basic, but
using Integer Basic here as an example)

>10 PR#p:CALL 768:END
>RUN

Note that even with the Apple Disk you should enter
the program -as above. Do not enter (where D$ is a
“CTRL—D”)

>10 PRINT D$;”PR#p”:CALL 768:END

4—12

as this will not work with the VIDEOTERM.

If you do not have the Apple Disk Operating
System (DOS), then you should modify the above
Assembly Language program by typing

*322:EA EA EA

These are NOP (No Operation) codes, and they
effectively keep the program from accessing DOS to
obtain its output address (also called a vector,
since it points to a location which itself contains
an address). The 6502 microprocessor will simply
ignore this instruction and execute the following
one This program modification should be done
before saving your copy of the program.

An important reminder is that the printer is
the controlling device, not the VIDEOTERM, so that
some of the VIDEOTERMs control key sequences will
not be activated, but printer control characters
will be.

B. Integer Basic

Program Listing 3 is an example of how to place
a character on the screen in a desired location
using an Integer Basic program. This program will
fill the video display with the entire character
set, with each line repeating the set but shifted
over one column so as to make a diagonal pattern.
The screen is filled in a random order, so that it
takes several minutes to completely fill the screen,
but the display is about 80% complete after one
minute. This program is an excellent one to use to
help fine tune the adjustment on your monitor.

Before we begin, it might be helpful if you
briefly review the discussion of how the VIDEOTERM’s
on—board RAM maps into the display and how it is
accessed by internal Apple II addresses.

4—13

Essentially, the on—screen location of a character
corresponds to its address in the RAM which is
located on the board. A unique set of addresses in
the Apple II allows you to access the VIDEOTERM RAM
directly, but this same set of Apple II addresses
can specify any one of 4 different address locations
on the VIDEOTERM. A technique called “paging” is
used, and by determining which page we are using
(each page being 512 bytes long), we have determined
where the character we are writing is really going
in the VIDEOTERMs RAM, and therefor, on the display
screen.

Let’s take a look in detail at how the program
operates. Line 10 defines several Basic variables.
START is the address, in decimal, of the memory
location in the Apple II where a VIDEOTERM address
is stored. This VTDEOTERM address, in turn, is
defined as the location where the first character of
the first line on the screen is stored (see $6E8 +
n, Table 1). This is needed since the actual memory
location in the on—board RAM of the first display
line on the screen varies. By adding the SLOT value
to START we will obtain the correct Apple II
address. This is done in line 15, with the result
being assigned to the variable LINEl.

DEVICE is the name of the variable assigned the
value of the base address of the 16—byte group of
slot dedicated addresses reserved for the various
peripherals. (Again, see the Apple II Reference
Manual, page 82.) The value —16256 is equal to
$CO8O or 49280. By adding SLOT times 16, we get the
value assigned to LINE2 in line 15. Note that if
SLOT = 3, then LINE2 = —16208 or 49328 or $COBO,
exactly the values we see in Table 3 for slot 3
usage! Because we have the VIDEOTERM in slot 3,
SLOT = 3 in line 10.

The value for SCREEN is equivalent to 53224 or
$CCOO, the Apple II address of the first character
of the current active page of VIDEOTERM Random

4—14

PROGRAM LISTING # 3

>LIST
10 START=1784:DEVICE=-16256: SLOT3:SCREEN=-13312:PLOT=100
15 LINE1=START+SL0T:LINE2=DEVICE+SLOT*I6
20 X= RND (80)
30 Y= RND (24)
40 BYTE=(X+Y) MOD 96+32
50 GOSUB PLOT
60 GOTO 20: REM

100 ADDRESS=(X+Y*90+ PFEK (LINE1*16) MOD 2048
110 PAGE=ADDRESS/512
120 SELECT= PEEK (LINE2+PAGE*4)
130 POKE SCREEN+(ADDRESS MOD 512),BYTE
140 RETURN

>

4—15

Access Memory. See the next chapter, page 5—11, for
an explanation of how the addresses $CCOO to $CDFF
are used in writing characters to the VIDEOTERM
memory. For now, just note that this is the base
address for VIDEOTERM RAM access.

Lines 20 and 30 assign a random integer number
between 0 and 79 to X and a random integer number
between 0 and 23 to Y. These correspond to the
column (X) and the row (Y) that we will put the
character in on the display screen. In line 40, we
then use the screen position to determine which
character will be printed there. The sum of X and Y
is taken modulo 96, which just means that a value
between 0 and 95 will be chosen depending on the
actual value of the sum. Then the value 32 is
added. This value is then assigned to the variable
BYTE. If you look at the ASCII symbols defined in
the Appendix Table, you will see that this limits us
to choosing an ASCII character whose decimal value
is between 32 and 127, inclusive. This includes all
the standard display characters, hut excludes the
control characters.

Line 50 directs program control to the PLO
subroutine, starting at program line 100. Finally
line 60 returns us to line 20 to repeat the process.
Note that the REM statement contains a “CTRL—J”
to space the PLOT subroutine down one line for easier
reading.

Line 100 starts the PLOT subroutine. A value
is calculated and assigned to the variable ADDRESS
This value is calculated as follows. First, the
on—screen character location is calculated as a
number between 0 and 1919 (X + Y * 80). The
on—screen character locations are numbered from 0 to
79 on the first line, 80 to 159 on the second, and
so forth, to 1840 to 1919 on the twenty—fourth line
This is added to the VIDEOTERM start screen address
multiplied by the value of 16. We do this because
the start screen address was divided by 16 in the

4—16

firmware to save one byte of room.

The resulting number of this process is then
taken modulo 2048, since there is only 2K RAM
on—board and thus there are only 2048 locations to
store information at. This is called “wrap—around”
since the character stored at VIDEOTERM RAM address
2047 is followed on the screen by the character
stored at address 0.

Line 110 assigns to PAGE the current active
page of on—board memory that will be accessed by
Apple II addresses in the range $CCOO to $CDFF.
Then line 120 assigns to SELECT the value stored at
the location $COBO, $C0B4, $COB8 and $COBC,
depending on the current active “PAGE”. The value
stored there is of no consequence. The access by
the “PEEK” activates the appropriate page. It is
important that a “PEEK” access be utilized at this
time for that purpose! (It can also be done at an
earlier time, but only after the correct address has
been calculated.)

Line 13O then writes the actual chosen
character, BYTE to the VIDEOTERM memory using a
poke. Simultaneously, the character appears
displayed on the monitor screen. The address for
the POKE is the base address of the VIDEOTERM
memory, SCREEN ($CC00) plus the page—relative
address of the character (“ADDRESS MOD 512”). Line
140 is the “RETURN” statement that ends the
subroutine.

You night want to play around with the program
a little. A faster display of the character set can
be obtained if you substitute “FOR” statements in
place of the two Random number calls on lines 20 and
30 and “NEXT” statements in place of the “GOTO”
statement on line 60. You can also change line 40
to print any set of characters that you would like
to see. Try modifying it to display the graphics
character set located at “CTRL—P” to “CTRL—SHIFT—O”.

4—17

PROGRAM LISTING # 4

PR#O
>LIST

5 DIM A(3):A(0)=1:A(1)=2:A(2)=4.:A(3)=8
10 START=1784 DEVICE=—16256:SLOT=3: SCREEN=—13312: PLOT= 100
15 LINE1=START+SLOT:LINE2=DEVICE+SLOT*16
20 FOR X=O TO 79
30 FOR Y=O TO 71
50 COSUB PLOT
60 NEXT Y,X: REM

100 ADDRESS=(X+Y/3*8O+ PEEK (LINE1)*16) MOD 2048
120 SELECT= PEEK (LINE2+ADDRESS/512*A)
130 ADD=SCREEN+(ADDRESS MOD 512)
147 R=Y MOD 3
155 BYTE= PEEK (ADD) MOD 8
157 STRIP=A(R+1)
160 POKE ADD,,BYTE/STRIP*STRIP+BYTE MOD A(R)+A(R)*COL
180 RETURN

>

4—18

Program Listing 4 follows the same pattern as
the previous example. The object of this program is
to demonstrate the writing of one of the graphics
characters in the range “CTRL—Z CTRL—@” to “CTRL—Z
CTRL—G” as explained in Table 2. Let us examine
this example in detail.

Line 5 assigns to the elements of the array A
the corresponding powers of 2. Thus, A(0) = 1, A(1)
= 2, (2) = 4, and A(3) = 8. These will be used
later in the program rather than an equivalent
calculation of the power of 2, because access of an
array element is much faster than the exponentiation
operation.

Lines 10 and 15 are similar to those lines in
Program Listing 2. Lines 20 and 30 set up a pair of
“FOR—NEXT” loops. Notice that in the current order,
the screen will be filled a column at a time. To
change this, simply reverse the order of the two
lines and change the “NEXT” statement in line 60.

Line 40 determines the color of the graphics
character to be printed which in this case is color
1 (magenta). This will appear as a white dot on
your Black and White monitor. In the listing it is
assigned a constant value, but we will change this
later. Line 50 calls the PLOT subroutine and line
60 continues the loops. Notice that the order of Y
and X need to be exchanged if you change the order
of the “FOR” statements. The “REM” statement of
line 60 contains a “CTRL—J” to skip a line in the
listing.

Line 100 begins the PLOT subroutine. We choose
the ADDRESS in the VIDEOTERMs RAM at which the
graphics symbol will be placed as in the preceding
example. Note that Y must be divided by 3 to obtain
a value between 0 and 23, inclusive. Line 120
activates the proper memory page, in a slightly
different fashion than was done in line 120 of the

4—19

previous example. Line 130 calculates the
page—specific address. The following lines require
considerable explanation. Before we describe these
in detail, let’s consider what is happening overall.

We wish to change the entire screen from black
to white by changing only one low—resolution pixel
at a time. As can be seen in Table 2, page 3—4,
each “CTRL <char>?? in the low—resolution graphics
character set contains 3 pixels. We will start with
the equivalent of “CTRL@” in character position 0
(first column, first row). We wish to replace it
with the symbol corresponding to “CTRL—A” as this
changes the color of the first pixel. Then, we will
replace that with “CTRL—C”, and then with “CTRL—G”.
This adds, in smooth increments, one pixel at a time
in that character position.

Now let’s look at the program in detail. Line
147 takes the modulo base 3 of the row variable, Y.
Note that the Y indexed “FOR NEXT” loop runs from 0
to 71. This is because each graphics symbol only
occupies one—third of a row! So we must take the
row number modulo base 3 to determine which of the 3
pixels at our current location is to be changed to
white.

Line 155 gets the contents of the current
screen location. This will be a value between 0 and
7, and will correspond to the assigned
low—resolution graphics character already there.
You will note that if you turn Table 2 on edge,with
the page number to your left, that the pixel
assignments fall in a normal bit pattern from the
values 0 (“CTRL—@”), 1 (“CTRL—A”), and so forth, to
7 (“CTRL—C”). (See bits 0, 1 and 2 for this
character group in the ASCII Character Code Chart,
page A—1.) Note that no matter which character is
actually at that location, a number between 0 and 7
will still be selected.

For example, if your screen was filled with

4—20

characters as a result of running the previous
example, and you ran this example without first
clearing the screen, then the program would detect
some character, perhaps a “.“. The rightmost three
bits add up to 6. Thus, BYTE could be assigned a 6,
which it would interpret as a “CTRL—F”. We will
follow this example as we continue to examine the
program.

Line 157 assigns a power of 2 to STRIP based
on the value of R. Since R must be 0, 1 or 2, STRIP
will be 1, 2 or 4, respectively. In our example, we
would obtain 2 for Y = 0, 4 for Y = 1, and 8 for Y =
2. Note that this calculation depends on which of
the three pixel we are adding to the display and not
the value of any character that might already exist
at that location.

At line 60 the actual “POKE” of the character
into address ADD is done. The value “POKE”d is
arrived at as follows. First, the higher order bits
of the first three bits of BYTE are obtained by
dividing and multiplying by STRIP. In our example,
6 would be divided by 2 (A(1) = 2 for R = 0, which
is always the first value used in any character
location due to line 147), and then multiplied by 2,
yielding 6. Thus, we have not changed bit 1 or 2 at
all by this operation, which is the object —— to
leave them undisturbed. This operation, with R = 0,
clears bit 0. When R — 1, we would clear bits 0 and
1, and when R = 2, we would clear bits 0, 1 and 2.
Then the “BYTE MOD A(R)” instruction gets any
previously set bits in this group (i.e., none for R
= 0, bit 0 for R = 1, and bits 0 and 1 for R =2).
Following our example, with R = 0, we would obtain a
0, since the modulo base 1 is always 0. Finally,
the “A(R) * COL” does the actual setting of bit 0.
In our example, it will be equal to 1 x 1 = 1.
Thus, our final “POKE” will be with a value of 7 and
we will fill the entire character location with a
white square in one jump. This is why the line
being drawn on the screen appears to jump faster

4—21

down the column when there are other characters on
the screen when you start to run the program. If
you clear the screen before running, the drawing
will be done in a smooth fashion.

On the next pass on this row, the value 7 will
be obtained by BYTE (all pixels colored), so that
with R = 1, we will calculate the value of 4 = BYTE
/ STRIP * STRIP, 1 = BYTE MOD A(1), and 2 A(1) *
COL, so that again a 7 will be obtained. You can
verify that the same result will occur for R = 2.

Now if the display was blank to begin with, for:
R = 0 we would obtain the value of 1 to be “POKE”d
for R = 1 we would obtain 3, and for R = 2 we would
obtain 7. You should verify this by calculating the
values for line 160 using BYTE — 0 to start.

Try modifying this program by substituting “COL
= RND(2)” at line 40. This will randomly determine
if the current pixel should be colored or not.

C. Applesoft

The VIDEOTERM is relatively easy to work from
Applesoft due to its intrinsic “ASC” and “CHR$
functions. As an example of how to implement a
shift/shift-lock feature under program control using
the “ESC” key as the shift key, examine Program
Listing 5.

Line 5 starts by defining the “ESC” key~
(CHRS~S(27)) to be the shift key toggle. We also set
the upper/lower case mode flag, UL = 1, indicating~
that all characters are to be interpreted in the
lower case. A value of 2 will indicate that we wish
to capitalize only the next character and a value of
3 will indicate that we wish to have all upper case
characters until we again type the “ESC” key.

Line 8 makes sure that UL will always be

4—22

PROGRAM LISTING # 5

PR#0
]LIST

2 HOME
3 VTAB 23: PRINT "VIDEOTERM" IS ACTIVE SCREEN”: PRINT CHR$ (4);”PR#3’
5 UL =1:A$ = CHR$ (27)
8 IF UL = 4 THEN UL = 1
10 GET XS:X = ASC (XS)
15 IF XS = AS THEN UL = UL + 1: GOTO 8

20 ON UL GOTO 30,40,50

30 XS = CHR$ (X + (32 * (X > 63)))

40 UL = 1

30 PRINT XS;: GOTO 10

10000 END

4—23

limited to the values 1, 2 or 3. Line 10 is used to
obtain a keyboard character, and then the ASCII
decimal value of the character is assigned to the
variable X.

In line 15, we test to see if we have receive
the “ESC” key entry. If we have, then we increment
UL and go to line 8 to make sure that UL does not
get too large. Thus, if UL = 1 and we get the
“ESC” key, then we change to upper case for the next
character (UL — 2). If another “ESC” entry follows
immediately, then we will go into shift lock (UL =
3). Another “ESC” in a row will leave us in lower
case again (UL = 4 ——> UL = 1). This functions very
much like a normal typewriter.

As soon as we receive any other key entry, we
will proceed to line 20. We jump to a location
dependent on the current UL value. If in lower case
mode, we will go to line 30. Here we take the value
X and add 32 to it if the character is a letter
i.e., if its ASCII decimal value exceeds 63. (See
the ASCII Character Code Chart, page A—i. We are
effectively mapping columns 4 and 5 into columns 6
and 7, respectively.) We emphasize that this is
only done when UL = 1.

If UL = 9 then we go to line 40, skipping the
lower case conversion. Line 40 sets UL = 1 again,
since the first “ESC” key was not followed
immediately by another “ESC”. If UL = 3, we would
proceed immediately to line 50 to print the
character just obtained. Note that for any of the
“GOTO"s we will “fall through”, executing the
following instructions, until line 50 sends us back
to line 10.

Now let's see how the program works using an
example. Enter the program and save it. Now run
it. Let’s enter the proper combination of
characters so that we will see

4—24

HELLO out There

displayed on the VIDEOTERM. Start by typing the
“ESC” twice. Then type “HELLO “, one letter at a
time. UL will now equal 3. Enter another “ESC” and
type “OUT”. The value of UL was changed to 4 and
then to before “OUT “ was typed, so we will see the
word displayed in lower case. Finally, type the
“ESC” key once and type “THERE”. The program will
type the “T” in upper case and the rest in lower
case. UL was set equal to 2 for “T”, and then back
to 1 at line 40.

You might want to incorporate this technique
into some of your own programs. The character string
could be appended to another one until a full line
was obtained and then it could he saved as part of a
text file. The technique can also be used with
Assembly language to interface your word processor
with the VIDEOTERM.

Program Listing 6 gives an example of cursor
positioning in Applesoft. Th program is simple and
straightforward. Line 5 prints a “CTRL—D”. Line 10
creates a string of 8 backspaces. Then the program
will request that you enter an X and Y coordinate of
a character location in the range of I to 80 for X
and I to 24 for Y. Note that this is different than
how the columns and rows are actually numbered, but
it is easier to count that way. Enter the values on
one line, separated by a comma and terminated by
striking the Return key.

Line 35 positions the cursor to the appropriate
location and line 50 displays the Rub—out character
(CHR$(127)) there. Then line 50 returns us to line
20 for input of another pair of coordinates.

While very simple, note that this is generally
useful. You should try translating the Integer
basic examples into Applesoft, especially the
low—resolution graphics example. That example and

4-25

PROGRAM LISTING # 6

5 PRINT CHR$ (12);
10 FOR I = 1 TO 8:H$ = H$ + CHR$ (8): NEXT I
20 VTAB 1: PRINT " ENTER X & Y COORDINATES
30 INPUT X,Y
35 PRINT CHR$ (30); CHR$ (31 + X); CHR$ (31 + Y);
50 PRINT CHR$ (127)
70 GOTO 20

this one can be integrated to yield a simple
plotting program. The low—resolution grapics set
gives 80 by 72 pixels, almost three times the
density of the Apple II’s format nf 40 by 48 in
low—resolution graphics mode.

4—26

These list ings are patch programs for KEYPRESS, the appropriate one should be
run for your version of Pascal with the disk that has SYSTEM.APPLE on it in
the drive that is volume #4. In addition to enabling the KEYPRESS function,
the type—ahead buffer and system break have also been enabled.

PROGRAM VIDPATCH;

(* This program patches the SYSTEM.APPLE console check routine for version *)
(* 1.0 to allow KEYPRESS, SYSTEM BREAK and type ahead buffers to operate *)
(* with the VIDEOTERM. Darrell Aldrich 10/80 *)

VAR BUF:PACKED ARRAY [0..31,0..511] OF 0..255;
F:FILE;
I INTEGER

BEGIN
RESET(F,’#4:SYSTEM.APPLE’);
l:=BL0CKREAD (F,BUF,32);
CLOSE(F);

BUF[3,147]:=4;
BUF[3,366]:=234; BUF[3,367]:=234; BUF[3,368]:=234;
BUF[3,202]:=160; BUF[3,203]:=48; BUF[3,204]:=173; BUF[3,205]:=D;
BUF[3,2061:=192; BUF[3,207]:=16; BUF[3,208):=18; BUF[3,209]:=32;
BUF[3,210]:=111; BUF[3,211]:=216; BUF[3,212]:=234;

RESET(F#4:SYSTEM.APPLE’);
I:=BLOCKWRITE(F,BUF,32);
CLOSE(F);

END.

PROGRAM! VIDPATCH;

(* This program patches the SYSTEM.APPLE console check routine for version *)
(* 1.1 to allow KEYPRESS, SYSTEM BREAK and type ahead buffers to operate *)
(* with the VIDEOTERM. Darrell Aldrich 1/81 *)

VAR BUF:PACKED ARRAY [0..31,0..511] OF 0..255;
F:FILE;
I:INTEGER;

BEGIN
RESET(F,’#4:SYSTEM.APPLE’);
I:=BLOCKREAD (F,BUF,32);
CLOSE(F);
BUF[3,389] :=160; BUF[3,390] :=48;
BUF[3,3941 :=60;
BUF[3,455] :=173; BUF[3,456] :=O; BUF[3,457] :=192; BUF[3,458] :=16;
BUF[3,459] :=29; BUF[3,460] :=32; BUF[3.461] :=24; BUF[3,462] :=218;
BUF[3,463] =234;
BUF[4,207] :=3;

RESET(F,’#4:SYSTEM.APPLE’);
I :=BLOCKWRITE(F,BUF,32);
CLOSE(F); 4—27

END.

D. Pascal

The use of the VIDEOTERM with Pascal is
especially easy due to the great flexibility of the
language and the Apple Language card operating
system. As a quick example, Program Listing 7 shows
how, to utilize the “GOTOXY” function.

Program XYADDRESS defines three integer
variables and a single string variable. I is used
as a loop index, and X and Y are, naturally, the X
and Y screen coordinates of the desired character
location. When the program begins, the string
variable S is set equal to “VIDEX” and the screen is
cleared. Then each of the letters of S are accessed
one at a time by execution of the “FOR” loop. The
“CASE” statement is used to assign the actual screen
coordinates at which the chosen character will be
printed. Then the “GOTOXY” function moves the
cursor there, and the Pascal internal “COPY”
function is used to acquire the correct character
from S and display it on the screen at the cursor
location. The next character is then done until the
“FOR” loop has been completed.

Enter the program using the Editor, then quit
and update your work file. Compile and run it. The
program will print “VIDEX” in a V pattern on the
screen, starting in column 0, row 1 and ending in
column 79, row 1.

You should also review the Program PEEKPOKE,
Program Listing 1, for a method of accessing and
changing internal memory location values.

4—28

PROGRAM LISTING #7

(*$L PRINTER: *)

PROGRAM XYADDRESS;

VAR I,X,Y:INTEGER;

 $:STRING;
BEGIN

S:=’VIDEX’; (* INITIALIZES STRING *)
 PAGE((OUTPUT); (* BLANKS SCREEN *)
 FOR I:=1 TO 5 DO BEGIN

 CASE I OF

 1: BEGIN X:=O;Y:=1;END;

 2: BEGIN X:=19;Y:=11;END;

 3: BEGIN X:=39;Y:=23;END;

 4: BEGIN X:=59;Y:=11;END;

 5: BEGIN X:=79;Y:=1;END;

 END; (* OF CASE STATEMENT *)

GOTOXY(X,Y);WRITE(COPY(S,I,1)); (* USES COPY INTRINSIC STRING FUNCTION *)

END; (* OF FOR LOOP *)

END. (* OF PEOGRAM *)

4—29

Using VIDEOTERM with Other Software

A. EasyWriter Professional Word Processing System

The EasyWriter, by Information Unlimited
Software, is now totally compatible with the
VIDEOTERM. Be sure to specify that you own a
VIDEOTERM when you purchase EasyWriter, or contact
IUS or your Apple dealer for details on how to
acquire software updates incorporating full
VIDEOTERM utilization. You can now view your text
as it will be printed before printing it. The
resulting display is much easier to read and
on—screen text editing is improved.

B. Apple PIE

The Apple PIE editor, avaiable from Programma
International, makes full use of all VIDEOTERM
features. Be sure to inform them that you own a
VIDEOTERM if you purchase the editor from Programma
directly, or from your local Apple dealer, to ensure
that you get the new version. Contact Programma
directly for information on updating your version of
Apple PIE, if you currently own a copy.

C. Others

At present, several other software houses are
modifying or creating software for full VIDEOTERM
compatibility. If you return the enclosed
registration page, VIDEX will keep you informed of
new and modified software products as they become
available.

4—30

Interfacing with Other Peripherals

A. Softcard

The new Softcard by Microsoft utilizes software
which, as far as the VIDEOTERM is concerned, looks
much the same as the Apple Language card. The
installation of the VIDEOTERM card in slot 3 will
cause the Softcard to treat your video screen as if
it was an ordinary display terminal. You should not
have to make any adjustments or changes to the
Input/Output routines of the CP/M Operating System.
See the Checkout section, page 2—12, and follow the
same procedures that you did with Apple Pascal in
adjusting your monitor for the VIDEOTERM.

B. D. C. Hayes Micromodem II

The VIDEOTERM and the Micromodem II are
compatible.

There are two basic ways to use the VIDEOTERM
and the Micromodem together. As a ‘dumb’ terminal,
without any program in memory, or under the control
of a communication program. If you are going to
use the Micromodem in the dumb terminal mode, it
may be advantageous to use the VIDEX Micromodem
firmware, which replaces the firmware on the
Micromodem board. With our version of the firmware
installed the prompts that the Micromodem issues
will be sent to the VIDEOTERM’s screen. Without our
firmware the prompts will be sent to the 40
column display, even if the VIDEOTERM is turned on!
It is important to note that there are some changes
in the operation of the Micromodem with our
firmware installed.

4—31

The most important modification is the removal
of the self—test feature of the original Micromodem
IT firmware. Attendant to this change is the
removal of the OUTA entry point in the firmware,
which was used with the self—test procedure. It is
therefore very important to keep your original
firmware EPROM in a safe place, as you will need it
for testing the unit when you desire. The other
changes to the firmware are:

The flashing cursor is no longer removed when
a character is received.

In the original firmware, bit 5 of the FLAGS
register C $77B) was unused. It is now used for
the VIDEOTERM bit. If bit 5 is set it indicates
that the VIDEOTERM board is present and output will
be routed to it directly. If it is not set, output
will be sent to the normal Apple II display.

Two new Zero Page locations are defined.
VIDEXL ($08) and VIDEXH ($09) hold the address of
the VIDEOTERM output call address. Remember that
this first address is called a vector because it
points to another location whose contents are of
interest. When the VIDEOTERM board is present,
output is routed via an indirect jump (hexadecimal
operation code 6C, see page 123 of the Apple II
Reference Manual) which uses the address stored at
VIDEXL and VIDEXH.

To use the VIDEOTERM with the Micromodem the
sign on process to a dial on computer network
varies slightly. The following illustration shows
the correct way to use the Micromodem and the
VIDEOTERM together. (This example assumes the
VIDEOTERM is in slot 3, the Micromodem is in slot
2, and the VIDEX micromodem firmware installed in
the Micromodem II)

4—32

 PROCEDURE RESULTS
1) Connect VIDEOTERM (If the soft switch is

not being used)
2) PR#3 Prompt returns
3) IN#2 Prompt returns
4) POKE 1786,0 (To enable lower case

display)
5) CRTL—A MICROMODEM:?
6) CTRL—F MICROMODEM:BEGIN TERM
7) CTRL—A MICROMODEM:?
8) CTRL—Q MICROMODEM:DIAL:
9) type number MICROMODEM:AWAIT CARR
10) wait MICROMODEM:CONN

At this point you should be able to sign on to
a computer network (such as the Source or
Micro—Net) normally, with the display in 80
columns! If you did not have the VIDEX Micromodem
firmware the procedure would be the same but you
would not have any display on the VIDEOTERM until
after step 10. (information on step 4 can be found
in the Micromodem manual)

Another popular way to use the Micromodem and
the VIDEOTERM together is through the use of a
Communications Program.

A good communications program can be
invaluable in making the most of your time when
connected to another computer. An important thing
to look for when buying a communications program
is: Compatability with the VIDEOTERM. Although most
programs work well with the VIDEOTERM some do not.
It is always a good idea to try Out a program
before buying it to insure that you will have no
problems setting up the program before trying to
use it.

4—33

If you are going to use the Micromodem with a
communications program it is important to note that
you have NO need for the VIDEX micromodem firmware.
In fact some programs, such as Apple Computer’s
News and Quotes and Dow Jones program will NOT work
with the modified ROM. However, most programs will
work properly with the VIDEX Micromodem firmware
installed in the Micromodem.

The following is a list of communications
programs that are known to work with a VIDEOTERM
and Micromodem.

ASCII Express ‘The Professional’
Transend
Data Capture 4.0 (VIDEOTERM version)
B. I. T. S.
Z Term (for CP/M)

This is in no way a comprehensive list of all
the communications programs that work with the
VIDEOTERM rather, it is a sampling of programs that
are currently available. New programs are
constantly being released for the Apple][and
should not be overlooked when buying a
communications program.

4—34

Creating New Character Sets

You may use any 2708, 2758 or 2716 EPROM
programmer although the most common and popular
programmer is the ROMWriter available from Mountain
Hardware. The ROMWriter utilizes 2716 EPROMs. You
Should check the Optional Hardware Modification
section, page 6—4 to 6—6, to ensure that your
VIDEOTERM is correctly set up for the Size of EPROM
that you are Planning to use. Note that the 2758
Should be set up like a 2716.

A. Text

Naturally, you may print all 128 ASCII
characters on your video monitor using the
VIDEOTERM. However, the expanded character set
available on the 2708 EPROM on the VIDEOTERM
contains another 64 characters which may be printed

Figure 4: Insertion of Character set EPROM into the
VIDEOTERM board

4—35

using the keyboard or by printing characters from
your running programs. To activate the expanded
character set, enter or “PRINT” the “CTRL—Z 3”.
Return to the standard character set with “CTRL—Z
2”. Depending on the EPROM that you have installed,
you may have virtually any character font available
to you. If you don’t have an EPROM installed in
your VIDEOTERM, the selection of the expanded
character set will simply generate blank white
squares.

VIDEX offers a variety of character fonts on
2708 and 2716 EPROMs. Write to us for a current
list of available character sets. These EPROMS are
easily installed in place of part U—17 in the
photograph on page A—4. Figure 4 shows a photograph
of the insertion of an EPROM into this location. Be
careful when inserting or withdrawing any chip from
the board as you can easily bend the pins which may
result in their breaking.

Figure 5 shows the keyboard correspondence for
the Line Drawing set EPROM. Figure 6 shows an
example report form created using this character
set. The actual use of character cells within the
matrix for this character set is shown in Figure 7a,
pages 4—40 to 4—43. The character set provided in
your 2716 EPROM Character Generator is shown in
Figure 7b, pages 4—44 to 4—51. Several blank forms
have been included as Figure 8, pages 4—52 to 4—55,
for you to use in creating your own character set.
Feel free to photocopy as many of these blank forms
as you like. You can program these yourself if you
have a 2708 EPROM Programmer for the Apple II. You
can even use a 2716 EPROM to obtain a total of 128
new characters by simply resoldering two jumpers on
the VIDEOTERM board (see page 6—4 and Figure 9b).

Follow the instructions included with your
EPROM programmer to program your chip. We advise
that you try programming the standard character set

4—36

on your first attempt and use it to replace the
VIDEX supplied EPROM in 11—20. That way you can
verify that you are following the correct procedures
in "burning" your EPROMs.

B. Graphics

You can generate your own set of graphics
display characters using your EPROM programmer.
Follow exactly the same method you used in
generating text character sets.

4—37

 ASCII: ASCII UC:

4—38

 SYMBOL: SUPER & SUBSCRIPT:

4—39

 GRAPHICS CHARACTER SET

4—40

 GRAPHICS CHARACTER SET

4—44

 GRAPHICS CHARACTER SET

4—45

 GRAPHICS CHARACTER SET

4—46

 GRAPHICS CHARACTER SET

4—47

 GRAPHICS CHARACTER SET

4—48

 GRAPHICS CHARACTER SET

4—49

 GRAPHICS CHARACTER SET

4—50

 GRAPHICS CHARACTER SET

4—51

FIRMWARE

For the casual user, not much need be said
about the firmware that The board comes equipped
with. For the most part, you will be satisfied with
the boards performance and much of what it does, why
it does it and how to modify it will remain
transparent to you. If, however, you enjoy
tinkering with register contents and other
esoterica, this section will provide you with some
very interesting Information.

We will begin this section with a discussion of
the CRT Controller chip that is the heart of the
VIDETERM board, the chip's function and how to
access its various registers and options. This will
be followed by a discussion of how to modify some of
the internal registers that your firmware uses.

Firmware Control of the VIDEOTERM Board

Included in a 2708 EPROM on the VIDEOTERM board
is the software which controls the CRT Controller
and other aspects of character processing. A
listing of this 6502 assembly language program
begins on page 5—x. A careful study of this listing
and its included comments will do much to instruct
you on how to access and control the VIDEOTERM from
your own assembly language programs.

At the heart of the VIDEOTERM board is the
Hitachi HD46505SP CRT controller IC chip (CRTC). It
is the largest chip on the board and occupies a
position just to the upper-left of center. While all
keyboard operations, curser movements, read and
write operations, and editing are under the 6502
microprocessor unit's (MPU's) control, the CRTC
provides all video timing for interfacing to raster
scan CRT displays.

5-1

The use of static Ram on the VIDEOTERM board
relieves the CRTC of the task of memory refresh.
Its other features are fully employed. These
functions include an internal cursor register which
may be altered so that the cursor may be programmed
to a unique shape, which allows ready recognition of
which program or part of a program is executing. A
light pen strobe input signal allows capture of the
status of an internal light pen register.

A. CRTG Internal Register Use

The CRTC contains a set of internal registers
which are user software programmable. The contents
of these registers are regularly scanned by the CRTC
to determine such matters as horizontal and vertical
raster timing, position of the cursor, cursor size
and shape, interlace mode and several other items.
Let us see what each of the 18 available registers
does.

Horizontal timing of the raster scan is
controlled by Registers RO, R1, R2 and R3. These
registers control the frequency, position and width
of the horizontal sync pulse and the frequency,
position and duration of the horizontal display
signal. The screen display point of reference for
horizontal registers is the left most displayed
character position. These registers contain data
which is in ‘character time’ units, determined by
the MCM657lA Character Generator. The timing units
are given in Table 4 for the various character cell
matrix sizes which are available through the "CTRL-Q
<params>” character sequence.

RO: An 8—bit write—only register that
determines the horizontal frequency which
is the total, minus one, of displayed and
non—displayed character time units. This
is called the Horizontal Total Register.

5—2

R1: An 8—bit write—only register that
determines the number of displayed
characters per line. This is termed the
Horizontal Display Register.

R2: An 8—bit write—only register that
determines the horizontal sync position on
the horizontal line. This is termed the
Horizontal Sync Position Register.

R3: A 4—bit write—only register that
determines the width of the horizontal
sync pulse. This is termed the Horizontal
Sync Width Register.

A variety of vertical registers control the
vertical sync pulse frequency and position and the
vertical display frequency and position. It also
generates row selects for interlace or non—interlace
modes. The point of reference for the vertical
registers is the top character position displayed.
These registers are programmed in ‘character time’
units.

R4: A 7—bit write—only register that
determines the vertical refresh rate in
conjunction with R5. The calculated
number of character linetimes is usually
an integer plus a fraction to obtain
exactly a 50 or 60 Hz vertical refresh
rate. The integer number of character
line times minus one is entered into this
register which is called the Vertical
Total Register.

R5: A 5—bit write—only register contains the
fraction needed to obtain, in conjunction
with R4, the needed exact 50 or 60 Hz
vertical refresh rate. This is called the
Vertical Total Adjust Register.

R6: A 7—bit write—only register determines the

5—3

number of displayed character row on the
screen (in ‘character row’ time units.
This is called the Vertical Displayed
Register.

R7: A 7—bit write—only register determines the
vertical sync position with respect to the
top reference line. This is called the
Vertical Sync Position Register.

R8. A 2—bit write—only register controls the
raster scan mode. As long as bit 0 is clear
(0), the display is in Normal Sync
Mode (non—Interlaced). When bit 0 is set
(1), bit I determines the mode. If it is
clear (0), then Interlace Sync Mode is
set. If bit 1 is set (1), then Interlace
Sync with Video Mode is set. The Normal
Sync Mode is what is normally selected by
the VIDEOTERM. Interlace Sync doubles the
number of dots, duplicating each dot below
its position, thus increasing the quality
of the displayed character. Interlace
Sync with Video keeps the character dot
matrix the same, but doubles the number of
lines on the screen so that twice as many
characters, each one—half their normal
size, are displayed on the screen. This
mode should only be chosen if you are
using a long—phosphor video monitor. This
is called the Interlace Mode Register.

R9~ A 5—bit write—only register that
determines the number of scan lines per
character row including spacing around the
character row. This is one less than the
number of scan lines. This register is
called the Maximum Scan Line Address
Register.

There are eight more registers available which
affect four other display characteristics. Since

5—4

these registers are utilized in pairs, we will
describe them in that way.

R10 and R11: The Cursor Start and End
Registers, respectively. R10 is a 7—bit and R11 is
a 5—bit write—only register. In both, bits 0 to 4
are the start and end row of the cursor. Rio, the
start row, may be set at any value from 0 to 11
(decimal). R11, the end row, may be set at any
value greater than or equal to the start row value.
Thus if the start row was 0 and the end row was 11,
a full cursor would be displayed, while if the start
and end rows were both 11 an underline cursor would
be formed. In addition, bits 5 and 6 of R10 are
used to set the Cursor Display Mode. If bit 6 is
clear (0), the cursor will not blink, while if it is
set (1), it will blink at a rate determined by bit
5. If bit 6 is clear then the status of bit 5
determines if there is a cursor displayed (cleared
or 0) or not (set or 1). When bit 6 is set and bit
5 is clear (0), you set a 1/16th field rate blink.
When bit 5 is set, you obtain a 1/32nd field rate
blink. You can set these registers so that you can
obtain a wide variety of customized and individually
recognizable cursors which can greatly aid you in
identifying which software program is currently
running.

R12 and R13: These are the high and low,
respectively, addresses for determining where to
start writing on the screen. You should not change
or utilize these registers in any way as you will
interfere with the scrolling operation of the
VIDEOTERM. R12 is a 6—bit and R13 is an 8—bit pair
of write—only registers called the Start Address
Register.

R14 and R15: These are high and low,
respectively, address components of a 14—bit address
determining the current cursor location. You do not
need to access these locations directly, but may
reposition the cursor through the use of the

5—5

“SHIFT—CTRL-N <x> <y>" sequence where the x and y
screen coordinates, in ASCII character codes are
given in place of the angle brackets. R14 is a
6—bit and R15 is an, 8—bit pair of read/write
registers called the Cursor Register.

 R16 and R17: These are high and low,
respectively, address components of a 14—bit address
which is stored when the Light Pen strobe goes high.
The address which is stored is the CRTC Address
Counter. R16 is a 6—bit and R17 is an 8—bit pair of
read—only registers.

 Table 4 on the following page summarizes this
information and gives the standard VIDEOTERM default
values used with its various character cell matrix
sizes.

5-6

5-7

B. How to Modify CRTC Registers

 Now that you know what the various registers
are, you undoubtedly want to know how to moddify
their contents. To do this you must place two
values into specific Apple II memory locations. The
first value is the register number, in hexadecimal,
that you wish to write into and the second value is
the new value to be entered. Thus, if you wanted to
change the cursor to a non—blinking upper half of a
cursor five rows thick, you would want to enter "OA
01” and OB 05” to place line numbers 1 and 5 into
RIO and R11, respectively. If you wanted to make
this cursor blink, you would enter “OA 61” where the
$61 (decimal 97) indicates that both bits 5 and 6 of
the word are set.

 But how do you determine the address at which
to enter these numbers? This is done using a device
select operation, which algorithm is as follows.
Your first hex address character must be a 'C' as
this is the address space used by Apple II in
dealing with its peripherals. The next number must be
zero. These are the high address of the device
select 16-byte group. The third number will be
eight plus the slot number so that if your board is
in slot 3 the number will be ‘B’ in hex. These
first three numbers of the correct address are
chosen according to Table 3, page 4—7. Also look at
Table 25, page 82, in the Apple II Reference Manual.
The last number of the four is either a ’0’ or ’ 1’.
Enter the CRTC Register to be changed using ‘0’ and
the value to be placed in that register using ‘1’.
Let us continue with our cursor modification example
above and enter the correct information, assuming
that you have the VIDEOTERm in slot 3. Enter the
Monitor by typing

CALL —154 (CR)

Then enter

5—8

*COBO:OA (CR)
*COB1:O1 (CR)
*COBO:OB (CR)
*COBI:05 (CR)

You can also enter the information with

*COBO:OA 01 (CR)
*COBO:OB 05 (CR)

You have now set the cursor to a non—blinking,
upper—half cursor, five matrix cell rows thick. You
have done this by reinitializing registers R10 and
R11.

C. Device Select Operation

Device selection is mentioned several times
throughout this manual. The calculation of the
correct 16—byte device specific group has been
demonstrated to be slot dependent. The preceding
section should how to use the device select to
modify a CRTC register. However, whenever a “PEEK”
or “POKE” command is executed in this group, several
things happen. To understand this, we need to
describe how the lowest 4 bits of this two—byte
address affects the VIDEOTERM. This is the ‘x’ in
the $COBx address. (For other slots, substitute $8
+ n, where n is the slot number of the VIDEOTERM.)

The very lowest bit, bit 0, controls whether a
register is being accessed (0) or the contents of
the register is being accessed (1). The next lowest
bit, bit 1, controls whether an eight or nine cell
matrix width is being used. VIDEOTERM automatically
interprets this as 0 (9 cells), so there is no
reason to change this.

The next two bits, bits 2 and 3, determine
which page will be selected (see VIDEOTERM memory
mapping, page 5—12. If the value of both is zero,

5—9

page zero is selected, if their Value together is
one, page one is selected, and so forth. Thus,
access of $COBO selects for slot 3, a register
access and page zero all at once. Similarly, $COC5
selects for .slot 4, register contents access and
page one use (bit 2 and bit 0 set).

D• Video Set—Up Flags

Table 1 defined the VlDEOTERM's use of
available Apple 11 RAM scratchpad locations.
Location $7F8 (decimal 2040) was defined as being
used as video set—up flags. These flags will be
explained here.

Each word of storage in the Apple II contains 8
bits. The bit locations In the word are identified
by a number between 0 and 7, with hit 0 the bit
furthest to the right in the word (representing the
l’s place) and bit 7 is the Furthest to the right
(representing the 128’s place, i.e. 2). Only 4 of
the 8 bits are used as flags.

Bit 0: Alternate character set flag. When set to
0, It selects the standard character set.
When set to 1, it selects the alternate
character set. If you have the modified
the VIDEOTERM to use its inverse video
option, then the setting of 0 selects for
standard video and 1 selects for an
inverse character (black on white field).

Bit 4: Number of rows flag. When set to 0, it
selects for display of 18 lines of text.
When •set to 1, it selects for display of
24 lines of text.

Bit 6: Upper/lower case flag. When set to 0, it
selects for non—conversion of entered text
so that an tipper case character (all that
you can type directly from the keyboard)
will remain tipper case. When set to 1, it

5—10

selects for conversion of the entered
character to lower case. This flag is
toggled by the “CTRL—A” entry.

Bit 7: GETLN flag. When set to 0 it indicates
that the VIDEOTERM input came from a
“GET” statement. When set to 1, it
indicates that your input has resulted
from use of the Apple’s GETLN routine,
which means input came from a program’s
“INPUT” statement or directly from the
keyboard. The behaviour of this routine
is fully documented in the Apple II
Reference Manual, pages 33—34.

5—11

VIDEOTERM Memory Mapping

As explained in the Apple II Reference Manual
on pages 84 and 85, the Apple II address range from
$C800 to $CFFF is reserved For mapping into 2K of
EPROM memory located on a peripheral card. Which
card, determined by its slot location, is referenced
by these addresses is determined by the “PR#n”
statement.

For the VIDEOTERM, the 1K range from $C800 to
$CBFF is used to access the controlling firmware on
the board. The address range From $CCOO to $CDFF is
used to address the VIDEOTERM’s on—board RAM. The
range from $CEOO to $CFFF is not presently used.

The address range from $CCOO to $CDFE only
covers 512 Bytes of storage. Since the VIDEOTERM
HAS 2K. of on—board RAM, four times the address
range, it would seem impossible to access all of the
on—board memory! To overcome this apparent
limitation, a technique called “paging” is used.

Basically, paging works as follows. The 2048
byte RAM area is subdivided into four 512—byte
segments, each called a “page”. Once the VIDEOTERM
is activated by the correct memory reference, it
will automatically set the correct active page. You
then write the character that you want displayed to
the relative address within the 512—byte group.
This is called a “page—relative address” and may be
calculated by taking the 2048—byte address modulo
512.Then write the character you want displayed to
that address.

Let us review the process as you would
implement it in one of your programs. Determine the
address within the 2048 byte on—board RAM that you
wish to access. This technique is illustrated in
the Applesoft and Integer Basic language software
examples in the preceding chapter on pages 4—12 to

5—12

4—23,and reviewed again below. Then execute a
“PEEK” on a page—specific address in the reserved
peripheral 16—byte group. For slot 3, these
addresses would be $C0~30, $COB4, $COB8 and $COBC
(49328 TO 49340). This sets the VIDEOTERM’s current
active page to the correct page. Finally, “POKE”
the desired character, represented by its ASCII
character code in decimal, into the page—relative
address acquired by taking the actual address “MOD
512”. You have just placed that character in the
VIDEOTERM’s on—board memory and you will see the
character properly displayed in its chosen position
on your monitor screen.

Note that when you determine the actual 2048
byte address, you must use the current screen start
line address stored at $6F8 + n = 1784 + n, where n
is the number of the slot in which the VIDEOTERM is
located. (See Table 1, page 3—2.) Multiply the
contents of this location by 16. Next determine
where on the screen you want to place the character.
The column number, X, may vary between 0 and 79, and
the row number, Y, may vary between 0 and 23. The
on—screen location will be X + 80 * y• This will
generate a number between 0 and 1919. Add this to
the start location times 16. Take this result
modulo 2048 to keep it in the correct numerical
range. The final algorithm is

ADDRESS = X + Y * 80 + PEEK(1784 + n) * 16

To activate the correct page, take the start
address of the 16—byte group dedicated to the slot
in which the VIDEOTERM is located. This address is
$0080 + n * 16 45184 + n * 16, where n is the slot
location. Add to this result the desired page to be
activated. This is calculated by taking the above
ADDRESS/512. A page number between 0 and 3 is thus
calculated. We then multiply by 4 to put this
number in bits 2 and 3 (see page 5—9). Lastly,
“PEEK” at the address which is the sum of the start
address and four times the page number. Thus

5—13

PAGE = ADDRESS/512
SELECT = PEEK(45184 + n * 16 + PAGE * 4)

The correct VIDEOTERM RAN page is now activated, and
any character written into the address space $CCOO
(52224) to $CDFF (53247) will go to the active page.

For Integer Basic, subtract the value 69536
from the above decimal address equivalents to
generate the correct negative decimal address
equivalent. The peripheral—specific 16—byte address
group base addresses are listed in Table 3, page
4—7, for all Apple languages.

5—14

:AIM
1 *************************************
2 * *
3 * VIDEOTERM INTERFACE *
4 * FIRMWARE V. 2.4 *
5 * *
8 * WRITTEN 8Y DARRELL ALDRICH *
7 * (Cl 1981 VIDEO *
8 *************************************
10 *
II * ZERO PAGE EQUATES
12 *
13 CH EQU $24
14 CV EQU $25
15 BASL EQU $28
16 OSAVE EQU $33
17 CSWL EQU $36
18 CSWH EQU $37
19 KSWL EQU $38
20 XSWH EQU $39
21 RNOL EQU $4E
22 RNON EQO $4F
23
24 * TEMPORARIES
25
26 CRFLAG EQU $478
27 ASAV1 EQU $4F8
28 XSAV1 EQU $578
29 TEMPX EQU SIFO
30 OLOCHAR EQU $618
31 NO EQU $6F8
32 MSLOT EQU $778
33 *
34 * MISC EQUATES
35 *
36 IN EQU $200
37 IORTS EQU $FFCB
38 *
39 SLOT N PERMANENTS
40 *
41 EASEL EQU $478 ;SCREEN BASE ADDRESS LOW
42 BASEM EQU $4FB ;SCREEN BASE ADDRESS HIGH
43 CHORZ EQU $578 ;CURSOR HORIZONTAL POSITION
44 CVERT EQU $SFB ;CURSOR VERTICAL POSITION
45 BYTE EQU $678 ;1/0 BYTE FOR PASCAL ENTRIES
46 START EQU $6FB ;SCREEN START ADDRESS
47 POFF EQU $778 ;POWER OFF AND LEAD IN COUNTER
48
49 * B0,61 15 GO TO IV LEAD IN COUNTER
38 * B2 15 CONTROL 7 LEADIN COUNTER
31 * B3—B? IS POWER OFF FLAG
32 *
53 FLAGS EQU $?F8 VIDEO SET UP FLAGS
34 *
55 * B0 ALTERNATE CHARACTER SET I=OH O=OFF
56 * B1
57 * B2
58 * B3

5—15

59 * 84 ROWS OF CHARACTERS 1=24 0=18
60 * 85
61 * 86 LOWER / UPPER CASE CONVERSION FLAG 1=ON 0=OFF
62 * 67 GETLN FLAG I=INPUT CANE FROM GErLN ROUTINE
63 *
64 *
65 * I0 DEVICES
66 *
67 K80 EQU $0000
68 KBDSTR8 EQU SCOIO
69 SPKR EQU $0030
70 DEVO EQU SCOBO
71 DEV1 EQU $0081
72 DISP0 EQU $CC0O
73 DISP1 EQU $0000
74 *
75 * ORG SC80O
76 * 08J $6800
77 *
78 *
79 * SET UP CRTC AND CLEAR SCREEN
80 *
81 *

C800: AD 78 07 82 SETUP LDA POFF ;GET POWER OFF FLAG
C805: 29 F8 83 AND #$F8 ;STRIP OFF LEAD IN COUNTERS
C807: C9 30 84 CMP #$30 ;HAS POWER BEEN TURNED OFF?
C809: FO 21 85 BEQ SETEXIT ;RETURN IF NOT
C803: A9 30 86 RESTART LDA #$30
C808: 80 78 07 87 STA POFF ;SET DEFAULTS FOR FLAGS
C80E: BD FB 07 88 STA FLAGS
C811: A9 00 89 LDA #$00
C813: 80 FB 06 90 STA START
C816: 20 61 09 91 JSR CLSCRN
C819: A2 00 92 LOX #$00
C818: 8A 93 LOOP TXA
C810: 80 80 C0 94 STA DEV0 ;FOR THE CRTO ADDRESS
C81F: 80 Al C8 95 LDA TABLE,X ;GET PRAMETER
C822: 80 81C00 96 STA DEV1 ;STORE INTO CRTC
C825: E8 97 INX
C826: CO 10 98 CPX #$10
C828: 00 Fl 99 8NE LOOP ;CONTINUE LOOP UNTIL DONE
C82A: 80 59 C0 100 SETEXIT STA $C059
C82D: 60 101 RTS

 102
 103

C82E: AD F8 07 104 LDA FLAGS
C831: 29 08 105 AND #$08
C833: FO 09 106 BEQ NORMOUT
C835: 20 93 FE 107 JSR $FE93
C838: 20 22 FC 108 JSR $FC22
C838: 20 89 FE 109 JSR $FE89
C83E: 68 110 NORMOUT PLA ;RECOVER REGISTERS
C83F: A8 111 TAY
C840: 68 112 PLA
C841: AA 113 TAX
C842: 68 114 PLA
C843: 60 115 RTS

 116 *
 117 *
 118 * ;GET CHARACTER FROM XEYBOARD

5—16

 119 *
C844: 20 DI CO 120 RDKEY JSR CSRMOV ;POSITION CURSOR
C847: E6 4E 121 KEYIN INC RNOL ;UPDATE BASIC RANDOM NUMBER
C849: DO 02 122 8NE KEYIN2
C840: E6 4F 123 INC RNOH
C84B: AD 00 CO 124 KEYIN2 LDA KBD ;POLL KEYBOARD
C85O: 10 FO 125 BPL KEY[I] ;LOOP UNTIL KEY IS STRUCK
C852: 20 SC CO 126 JSR KEYSTAT
C855: 90 FO 127 8CC KEYIN
C857: 2C 10 CO 128 NOKEY BIT K8OSTR8 ;CLEAR KEYBOARD STROBE
C85A: 10 129 CLC
C85B: 60 130 RTS

 131 *
C85C: CV 00 132 KEYSTAT CMP #$8B ;CHECK FOR CONTROL K
C85E: DO 02 133 8NE NOTK ;SKIP IF NOT
C860: A9 00 134 LDA #$D8 ;SUOSTITUTE A RIGHT BRACKET
C862: C9 81 135 NOTK CMP #$81 ;CHECK FOR CONTROL A
C864 DO OA 136 8NE NTSHFT ;SKIP IF NOT
C866: AD FB 07 137 LDA FLAGS
C869: 49 40 138 EOR #$40
C86B: 00 FO 07 139 STA FLAGS ;TOGGLE UPR/LWR CASE FLAG
C86E: 00 El 140 8GE NOKEY ;GET NEXT KEY
C870: 40 141 NTSHFT PHA ;SAVE CHARACTER
C87l: AD FR 07 142 L0A FLAGS
C874: OA 143 ASL
C875: 0A 144 ASL ;CHECK UPR/LWR CASE CONVERSION FLAG

C876: 60 145 PLA ;RESTORE CHARACTER
C877: 90 IF 146 8CC INDONE ;DON’T CONVERT IF FLAG CLEAR
C879: C9 80 147 CMP #$80
C87B: 90 1F 148 8LT INDONE ;DON’T CONVERT SPECIAL CHARACTERS
C87D: 2C 63 CO 149 8IT $C063
C880: 30 14 150 8MI NOSHIFT
C882: C9 80 151 CMP #"0"
C884: F0 0E 152 BEQ ZERO
C886: C9 CO 153 CMP #"@"
C888: DO 02 154 8NE NOT@
C88A: A9 DO 155 LDA #"P"
C88C: C9 C8 156 NOT@ CMP #"["
C88E: 90 08 157 8LT INOONE
C89O: 29 CF 158 AND #$CF
C892: D0 04 159 8NE INDONE
C894: A9 DO 160 ZERO LDA #"]"
C896: 09 20 161 NOSHIFT ORA #$20
C898: 48 162 INDONE PHA ;DUPLICATE CHARACTER
C899: 29 7F 163 AND #$7F ;STRIP OFF HIGH BIT
C89B: 8D 78 06 164 STA BYTE ;SAVE FOR PASCAL
C89E: 68 165 PLA ;RECOVER FOR BASIC
C89F: 38 166 SEC
C8A0: 60 167 RTS

 168 *
C8Al: 78 50 5E
C8A4: 29 18 0B
C8A7: 18 19 169 TABLE HEX 78505E2918081819
C8A9: 00 08 E0
C8AC: 08 00 0O
C8AF: 00 00 170 HEX 0008EO0800000000

 171 *
 172
 173 * SECONDARY BASIC OUTPUT ROUTINE

5—17

174 *
175 *

C881: 8D 78 06 176 BASOUT1 STA BYTE ;SAVE CHARACTER
C884: A5 25 177 LDA CV ;PERPORM VTAB
C886: C0 F8 05 178 CM? CVERT
C889: F0 06 179 BEQ CVOK
C888 80 PB 05 180 STA CVERT
C88E 20 04 CA 181 JSR VTAB
C8C1 AS 24 182 CV0K LDA CH ;PERFORM HTAB
C8C3 CD 70 05 183 CMP CHORZ
C8C6 90 03 184 8CC PSCLOUT
C8C8 80 78 05 885 8TA CHORZ
C8CB AD 78 06 886 PSCLOUT LDA BYTE ;GET CHARACTER
C8CE 28 89 CA 887 JSR OUTPTI ;OUTPUT CHARACTER
C8D1 A9 OF 188 CSRMOV LDA #$0F ;SET UP CRTC ADDRESS
C8D3 80 80 CO 189 STA DEVO ;FOR CURSOR LOW ADDRESS
C8D6 AD 78 05 190 LDA CHORZ ;CALCULATE ADDRESS
C8D9 C9 50 191 CMP #80
C8D8 00 13 192 BCS RTS6
C8DD AD 70 04 193 ADC BASEL
C8E0 80 01 CO 194 STA DEV1 ;SAVE ADDRESS
C8E3 A9 OE 195 LDA #$OE ;SET UP CRTC AOORESS
C8E5 80 80 CO 196 STA DEVO ;FOR CURSOR HIOM ADDRESS
C8E8 A9 00 197 LOA #$00 ;CALCULATE ADDRESS
C8EA 60 F8 04 198 AOC BASEH
C8E0 80 81 CO 199 STA DEV1 ;SAVE ADDRESS
C8FO 60 200 RTS6 RTS

201 *
202 *
203 * PERFORM ESCAPE FUNCTIONS
204 *

C8F1 49 CO 205 ESC1 EOR #$CO
C8F3 C? 08 206 CMP #$08
C8F5 80 10 207 OGE RTS3
C8F7 A8 208 TAY
C8F8 A9 C9 209 LOA #>BELL
C8FA 48 210 PHA
C8FB 89 P2 CO 211 LOA ESCT8L,Y
C8FE 48 212 PHA
C8FF 60 213 RTS

214 *
C900 EA 215 NOP

216 *
C901 AC 78 05 217 CLREOL LOY CHORZ ;PUT CURSOR HORIZONTAL ONTO Y
C904 A? AO 218 CLEOLZ LDA #$A0 ;USE A SPACE
C906 20 71 CA 219 CLEOLO JSR CHRPUT ;PUT CHARACTER ON SCREEN
C909 C8 220 INY
C90A CO 50 221 CPY #80 ;CONTINUE UNTIL
C90C 90 P8 222 8LT CLEOL2 ;Y>=80
C90E 60 223 RTS

224 *
C90F A9 34 225 LEADIN LDA #$34 ;SET LEAO IN BIT
C911 80 78 07 226 PSAVE STA POFF
C914 60 227 RTS3 RTS
C915 A9 32 228 GOXYI LOA #$32 ;SET LEADIN COUNT TO 2
C917 00 P8 229 8NE PSAVE

230 *
C919 AO CO 231 BELL LOY #$C0 ;BEEP THE SPEAKER
C91B A2 80 232 BELLI LDX #$80
C91D CA 233 BELL2 DEX

5—18

C9lE: 00 FO 234 BNE BELL2
C020: AD 30 CO 235 LDA SPKR
C023: 88 236 DEY
C024: DO FS 237 BNE BELL1
C926: 60 238 RTS

239
240
241 * STORE CHARACTER ON SCREEN AND ADVANCE CURSOR
242 *

C027: AC 70 05 243 STOADV LOY CHORZ
CO2A: CO 50 244 CPY #80
C92C: 90 05 245 BCC NOT8I
CO2E: 48 246 PHA
CO2F: 20 80 CO 247 JSR CRLF
C032: 60 248 PLA
C933: AC 78 05 249 NOT8I LDY CHORZ
C936: 20 71 CA 250 JSR CHRPUT ; PLACE CHARACTER ON SCREEN
C939: EE 78 05 251 ADVANCE INC CHORZ ; INCREMENT CURSOR HORIZONTAL INDEX
CO3C: 2C 70 04 252 BIT CRFLAG
C93F: 10 07 253 BPL RTS8
C941: AD 72 05 254 LDA CHORZ
C044: C9 50 255 CMP #80
C946: 80 68 256 BCS CRLF
C048: 60 257 RTS8 RTS
 258 *

259 * CLEAR TO END OF hAGE
260 *

C040: AC 78 05 261 CLREOP LOY CHORZ ; GET CURSOR HORIZONTAL INTO Y
C94C; AD FO 05 262 LDA CVERT ; GET CURSOR VERTICAL INTO A
C94F: 48 263 CLEOP1 PHA ; SAVE CURRENT LINE ON STACK
COSO: 20 07 CA 264 JSR VTABZ ; CALCULATE BASE ADDRESS
C953: 20 04 C? 265 JSR CLEOLZ ; CLEAR TO END OF LINE, SET CARRY
C056: AO 00 266 LDY #$00 ; CLEAR FROM HORIZONTAL INDEX 0
COSO: 60 267 PLA
C959: 69 00 268 ADC #%00 ; INCREMENT CURRENT LINE (C=I)
C95B CO 18 269 CMP #24 ; DONE TO BOTTOM OF WINDOW?
CO5D: 90 F0 270 BCC CLEOP1 ; IF NOT KEEP CLEARING LINES
C95F: 80 23 271 BCS JVTAB ; VERTICAL TAB TO CURSOR POSITION

272 *
273 *
274 * CLEAR SCREEN
275 *

C960: 20 67 CO 276 CLSCRN JSR HOME ; HOME CURSOR
C064: 98 277 TYA
C965: FO ES 278 BEQ CLEOP1 ; CLEAR TO END OF PAGE

279 *
280 * HOME CURSOR
281 *

C067: A9 00 202 HOME LOA #$00 ; SET CURSOR POSITION TO 0,0
C969: OD 78 05 283 STA CHORZ
C96C: 80 F8 05 284 STA CVERT
C96F: AS 205 TAY
C970: FO 12 286 BEQ JVTAB ; VERTICAL TAB TO CURSOR POSITION

287 *
C972: CE 78 05 288 BS DEC CHURZ ; DECREMENT CURSOR HORIZONTAL INDEX
C075: 10 OD 289 8PL RTS3 ; IF POS, OK. ELSE MOVE UP
C077: A9 4F 290 LDA #79 ; SET CURSOR HORIZONTAL TO
C070: 8D 78 05 291 STA CHORZ ; RIGHTMOST SCREEN POSITION

292 *
293 * MOVE CURSOR UP

5—19

294 *
C97C: AD EB 05 295 UP L0A CVERT ; GET CURSOR VERTICAL INDEX
CO7F: FO 93 296 BEQ RTS3 ; IF TOP LINE THEN RETURN
C981: CE PB 05 297 DEC CVERT ; DECREMENT CURSOR VERTICAL INDEX
C984: 4C 04 CA 298 JYTAB JMP VTA8 ; VERTICAL TAB TO CURSOR POSITION

299 *
200 *

C987: A9 30 301 NOTGOXY LDA #$30 ; CLEAR LEAD IN BITS
C989: 80 78 07 302 STA POFF
C98C: 68 303 PLA ; RECOVER CHARACTER
C980: 09 80 304 ORA #$80
C98F: C9 81 305 CMP #"1"
C991: 00 67 306 BNE NOTO
C993: A9 08 307 LDA #$O8
C995: 80 58 CO 308 STA $CO58
C998: 00 50 309 BNE FLGSET

310 *
CO9A: C9 82 311 NOT1 CMP #"2"
C99C: DO 51 312 8NE NOT2
C99E: A9 FE 313 LOLITE LDA #$FE
C9AO: 20 FO07 314 FLOCLO AND FLAGS
C9A3: 80 PB07 315 FLGSAV STA FLAGS
C9A6: 60 316 RTS

317 *
318 *
319 *
320 * PASCAL OUTPUT ENTRY POINT
321 *
322 *

C9A7: 80 78 06 323 PSOUT STA BYTE
C9AA: 4E 78 04 324 LSR CRFLAG
C9AD: 4C C8 C8 325 JMP PSOLOUT ; JUMP FOR PASCAL ENTRY

326 *
327 *
328 * CR LF ROUTINE
329 *

C980: 20 27 CA 330 CRLF JSR CR
C983: EE F8 05 331 LF INC CVERT ; INCREMENT CURSOR VERTICAL
C9B£: AD FB 05 332 LDA CVERT
C9B9: C9 18 333 CMP #24 ; OFF SCREEN?
C988: 90 4A 334 8CC VTABZ ; IF NOT MOVE CURSOR
C980: CE FB 05 335 DEC CVERT ; IF SO DECREMENT CURSOR VERTICAL

336 *
C9CO: AD FR 06 337 LDA START ; INCREMENT THE START ADDRESS
C9C3: 69 04 338 ADC #$04 ; BY ONE LINE
C9CS: 29 7F 339 AND #$7F
C9C7: 80 F8 06 340 STA START
C9CA: 20 12 CA 341 JSR BASCLC1 ; CALCULATE THE START ADDRESS
COCO: A9 00 342 LDA #$0D ; SET UP CRTC ADDRESS
C9CF: 80 80 CO 343 STA DEVO ; FOR START LOW ADDRESS
C9D2: AD 78 04 344 LDA BASEL ; GET START LOW
C905: 80 81 CO 345 STA DEV1 ; SAVE START LOW
CODO: A9 OC 346 LDA #$OC ; SET UP CRTC ADDRESS
CODA: 80 BO CO 347 STA DEVO ; FOR START HIGH ADDRESS
CODO: AD FB 04 348 LDA BASEH ; GET START HIGH
C9EO: 80 RI CO 349 STA DEV1 ; SAVE START HIGH
C9E3: A9 17 358 LDA #23 ; PUT WINDOW BOTTOM—1 INTO A
COES: 20 87 CA 351 JSR VTABZ ; CALCULATE BASE ADDRESS
C9E8: AO 08 352 LDY #$00
C9EA: 20 84 C9 353 JSR CLEOLZ ; CLEAR BOTTOM LINE

5—20

COED: 80 95 354 BCE JVTAB ;MOVE CURSOR BACK
355 *

COEF: C9 B3 356 NOT2 CMP #"3"
C9F1: DO 0E 357 BNE JST0ADV
COF3: A9 01 358 HILITE LOA #$0l
COPS: 0D F8 359 FLGSET ORA FLAGS
C9P8: D0 A 360 BNE FLGSAV

361 *
362 *
363 * BASIC INITIAL I/O ENTRY POINT
364 *
365 *
366 *

C9FA: C9 B0 367 NOTO CMP #"0"
C9FC: DO 9C 368 BNE NOT1
C9FE: 4C 09 C8 369 JMP RESTART

370 *
CAO1: 4C 27 CO 371 JSTDADV JMP STOADV

372 *
CAO4: AD PB 05 373 VTAB LDA CVERT ;GET CURSOR VERTICAL
CAB7: 8D P8 04 374 VTABZ STA ASAV1 ;MULTIPLY A BY 5
CAOA: OA 375 ASL
CAOA: OA 376 ASL
CAOC: 6D P8 04 377 ADC ASAV1
CA0E: 6D P8 06 378 ADC START ;ADD START
CA12: 48 379 BASCLCI PHA ;SAVE A
CA13: 4A 380 LSR ;CALCULATE BASEH
CA14: 4A 381 LSR
CAIS: 4A 382 LSR
CA16: 4A 383 LSR
CA17: 8D PB 04 384 STA BASEH
CA1A: 68 385 PLA ;RECOVER A
CA1B: OA 386 ASL ;CALCULATE BAGEL
CA1C: OA 387 ASL
CA1D: OA 388 ASL
CA1E: OA 389 ASL
CAlF: 8D 78 04 390 STA BAGEL
CA22: 60 391 RTS2 RTS

392 *
393 *

CA23: C9 00 394 VIDOUT CMP #$OD
CA25: DO 06 395 BNEVOGUT1
CA27: A9 00 396 CR LOA 11000
CA29: 80 78 05 397 STA CHDRZ
CA2C: 60 398 RTS
CA2D: 09 80 399 VDOUT1 ORA #$80 ;SET HIGH BIT
CA2F: C9 AO 400 CMP #$A0
CA31: 00 CE 401 BGE JSTOADV ;IF NOT CONTROL PRINT IT
CA33: CO 87 402 CMP #$87
CA3S: 90 08 403 BLT RTS4 CTRL @ — F
CA37: A8 404 TAY
CA38: AO C9 405 LDA #>BELL
CA3A: 48 406 PHA
CA3B: 09 89 CO 407 LDA CTLTBL—$87,Y
CA3E: 48 408 PHA
CA3F: 60 409 RTS4 RTS

410 *
CA40: 411 CTLTBL DFB BELL—1
CA41: 412 DFB 85—1
CA42: 413 DFB RTS3—I

5—21

CA43: 82 414 DF8 LF—1
CA44: 48 415 DF8 CLREOP—l
CA4S: 60 416 DF8 CLSCRN—1
CA46: AF 417 DF8 CRLF—I
CA47: 90 418 DF8 LOLITE—l
CA48: E2 419 DF8 HILITE—1
CA49: 13 420 DF8 RTS3—1
CA4A: 13 421 DF8 RTS3—1
CA4E: 13 422 DF8 RTS3—1
CA4C: 13 423 DF8 RTS3—1
CA4D: 13 424 DF8 RTS3—l
CA4E: 13 425 DF8 RTS3-1
CA4E: 83 426 DF8 RTS3—1
CA50: 13 427 DF8 RTS3—1
CA5I: 13 428 DF8 RTS3—1
CA52: 66 429 DF8 HOME—1
CA53: 0E 430 DF8 LEAD1N—1
CA54: 13 431 DF8 RTS3—1
CA55: 38 432 DF8 ADVANCE-1
CA56: 00 433 DF8 CLREOL—1
CA57: 14 434 DF8 GOKY1—1
CA58: 78 435 DF8 UP—1

436 *
437 * CALCULATE SCREEN ADDRESS AND SWITCH IN CORRECT PAGE
438 *
439 *

CA59: 18 440 PSNCALC CLC
CA5A: 98 441 TYA
CA5E: 60 78 04 442 AOC BASEL1
CA5E: 48 443 PHA
CA5F: A9 00 444 LDA #S00 ; CALCULATE SCREEN ADDRESS HIGH
CA6l: 60 F8 04 445 ADC BASEN
CA64: 48 446 PHA
CA65: 0A 447 ASL
CA66: 29 OC 448 AND #$0C ; USE BIT 0 AND I FOR PAGING
CA68: AA 449 TAX
CA69: 80 80 CO 450 LDA DEVO,X ;SET CORRECT SCREEN PAGE
CA6C: 68 451 PLA
CA6O: 4A 452 LSR
CA6E: 68 453 PLA
CA6F: AA 454 TAX
CA7O: 60 455 RIS

456 *
457 *
458 * PUT A CHARACTER AT CVERT, CHORZ
459 *
460 *

CA7I: OA 461 CHRPUT ASL
CA72: 48 462 PHA ; SAVE SHIFTED CHARACTER
CA73: AD FO 07 463 LDA FLAGS ; GET CHARACTER SET FLAG
CA76: 4A 464 LSR ; SHIFT IT INTO CARRY
CA77: 68 465 PLA ; RECOVER SHIFTED CHARACTER
CA78: 6A 466 ROR ; ROTATE CARRY INTO CHARACTER
CA79: 48 467 PHA ; SAVE CHARACTER
CA7A: 20 59 CA 468 JSR PSNCALC ; SET UP SCREEN ADDRESS
CA7D: 68 469 PLA ; RECOVER CHARACTER
CA7E: 80 05 470 ECS WRITE1 ; SELECT MEMORY RANGE
CA8O: 90 00 CC 471 STA DISPO,X ; STORE CHARACTER ON SCREEN
CA83: 90 03 472 BCC WSKIP ; SKIP
CA85: 90 00 CD 473 WRITEl STA DISPl,X ; STORE CHARACTER ON SCREEN

5—22

CA88:60 474 WSKIP RTS ;RECOVER X REGISTER
475 *
476 *
477 * GENERAL OUTPUT ROUTINE
478 *
479 *

CA89: 48 480 OUTPT1 PHA ; SAVE CHARACTER
CA8AtA9F? 481 LDA #$F7
CA8C:20A8 C9 482 JSR FLGCLR
CA8F:8059 CO 483 STA $CO59
CA92:AD78 07 484 LDA POFF
CA95:2907 485 AND #$07 ; CHECK FOR LEAD IN
CA970004 486 BNE LEAD ; BRANCH IF LEAD IN
CA99:68 487 PLA ; RECOVER CHARACTER
CA9A:4C23 CA 488 JMP VI DOUT ; OUTPUT CHARACTER

489 *
CA9D:2904 490 LEAD AND #$04 ; CHECK FOR GO TO KY
CA9F:FR03 491 BED GOXY3 ; IF NOT SKIP
CAAI:4C87 C9 492 JMP NOT GOXY
CAA4:68 493 GOXY3 PLA ; RECOVER CHARACTER
CAA5:38 494 SEC
CAA6:E920 495 S8C #$20 ; SUBTRACT 32
CAA8:297F 496 GOTOXY AND #$7F ;STRIP OFF UNEEDED BITS
CAAA:48 497 PHA ; SAVE A
CAAO:CE78 07 498 DEC POFF ; DECREMENT LEAD IN COUNTER
CAAE:AD78 07 499 LDA POFF
CABI:2903 500 AND #S03 ; GET COUNT
CAO3:0015 501 8NE GOXY2 ; SKIP IF COUNT NOT ZERO
CABS:68 502 PLA ; RECOVER A
CAO6:C918 503 CMP #24 ; IF A > WINDOW BOTTOM
CAO8:8803 504 BGE BADY ; THEN DON’T MOVE CURSOR VERTICAL
CABA:80FO 05 505 STA CVERT
CABO:ADF8 05 506 BADY LDA TEMPX ; GET CURSOR HORIZONTAL PRAMETER
CACO:C950 507 CMP #80 ; IF A > 80 THEN
CAC2:0003 508 OGE BADX ; DON’T MOVE CURSOR HORIZONTAL
CAC4:8078 05 509 STA CHORZ
CAC7:4C04 CA 510 BADO JMP VTAB ; VERTICAL TAB TO CURSOR POSITON
CACA:68 511 ODKY2 PLA ; RECOVER A
CACO:80F8 05 512 STA TEMPX ; SAVE CURSOR HORIZONTAL PARMETER
CACE:60 513 RTS

514 *
515 *
516 * STOP LIST ROUTINE
517 *
518 *

CACFzAD00 CO 519 STPLST LDA K80
CAD2:C993 520 CMP #$93
CAO4:00OF 521 BNE STPDONE
CAD6:2C10 CO 522 BIT KBOSTRB
CAD9:AD00 CO 523 STPLOOP LDA KB0
CADC:10PB 524 BPL STPLOOP
CADEiC983 525 CMP #$83
CAEO:F803 526 BEQ STPDONE
CAE2:2C10 CO 527 BIT KBDSTRB
CAE5:60 520 STPDONE RTS

529 *
CAE6:A8 530 ESCNOW TAY
CAE7:8931 CO 531 LDA KLTBL—$C9,Y
CAEA:20Fl C8 532 SR ESCI
CAED:2044 CS 533 ESCHEW JSR RDKEY

5—23

CAF0: C9 CE 534 CMP #$CE
CAF2: B0 08 535 ODE ESC 2
CAE4: C9 C9 536 ClMP 8$C9
CAF6: 90 04 537 BLT ESC2
CAFS: C9 CC 538 ClMP #$CC
CAFA: DO EA 539 BNE ESCNOW
CAFC: 4C Fl C8 540 ESC2 JMP ESC1
CAFF: EA 541 NOP

542 *
543 *
544 *
545 *
546 *
547 * BASIC INITIAL I/O ENTRY POINT
548
549 *

CB00: 2C CB FF 550 BIT IORTS ; SET VFLAG ON INITIAL ENTRY
CB03: 70 31 551 BVS ENTR
CB05: 38 552 INFAKE SEC ; FAKE INPUT ENTRY C=0
CB06: 90 553 HEX 90
CB07: 18 554 OUTENTR CLC ; OUTPUT ENTRY C=l
CB08: B8 555 CLV
CB09: 50 28 556 BYC ENTR
CB0B: 01 82 557 HEX 0182
CB0D: 11 558 DEB INIT
CB0E: 14 559 DFB READ
CB0F: 1C 560 DFB WRITE
CB10: 22 561 DFB STATUS

562 *
CB11: 4C 00 C8 563 INIT JMP SETUP

564 *
CB14: 20 44 C8 565 READ JSO RDKEY
CB17: 29 7F 566 AND #$7F
CB19: A2 00 567 LOX #$00
CB1B: 60 568 RTS

569 *
CB1C: 20 A7 C9 570 WRITE JSR PSOUT
CB1F: A2 00 571 LOX #$00
CB21: 60 572 RTS

573 *
CB22: C9 00 574 STATUS CMP #$00
CB24: F0 09 575 BEQ STEXIT
CB26: AD 00 C0 576 LDA KBD
CB29: 0A 577 ASL
CB2A: 90 03 578 BCC STEXIT
CB2C: 20 SC C8 579 JSR KEYSTAT
CB2F: A2 00 580 STEX IT LDX #$00
CB31: 60 581 RTS

582 *
583 * BAS1C INPUT ENTRY POINT
584 *

CB32: 91 28 585 INENTR STA (BASL),Y ; REPLACE FLASHING CURSOR
CB34: 38 586 SEC
CB35: B8 587 CLV
CB36: 8D FE CF 588 ENTR STA $CFFF ; TURN OFF CO-RESIDENT MEMORY

559 *
590 *
591 *
592 * SAVE REGISTERS SET UP NO AND CN
593 *

5—24

594 *
CB39: 48 595 WHERE PHA ; SAVE REGISTERS OH STACK
CB3A: 85 35 596 STA XSAVE
CB3C: 4A 597 T XA
CB3D: 48 598 PHA
CB3E: 98 599 TYA
CB3F: 48 600 PHA
CB40: A5 35 601 LDA XSAVE ; SAVE CHARACTER
CB42: 86 35 602 STX XSAVE ; SAVE INPUT BUFFER INDEX
CB44: A2 C3 603 LDX #$C3
CB46: BE 78 04 604 STX CRFLAG
CB49: 4B 605 PHA
CB4A: 50 10 606 BVC 10 ; GO TO ID IF NOT INITIAL ENTRY

607 *
608 *
609 * BASIC INITIALIZE
610 *
611 *

CB4C: A9 32 612 LOA #<INENTR ; SET UP INPUT AND OUTPUT HOOKS
CB4E: 85 38 613 STA K SWL
CB50: 86 39 614 STO K SWH
CB52: A9 07 615 LDA #<OUTENTR
CB54: 85 36 616 STA CSWL
CB56: 86 37 617 STO CSWH
CB5B: 20 00 CB 618 JSR SETUP ; SET UP CRTC
CB5B: 18 619 CLC

620 *
621 *

CB5C: 90 6F 622 10 BCC BASOUT
623 *
624 *
625 * BASIC INPUT ROUTIE
626 *
627 *

CB5E: 68 628 B ASI NP PLA ; POP STACK
CB5F: A4 35 629 LDY XSAVE ; GET INPUT BUFFER INDEX
CB61: F0 1F 630 BEQ GETLN ; IF ZERO ASSUME GETLN
CB63: 88 631 DEY
CB64: AD 78 06 632 LDA OLdCHAR ; GET LAST CHARACTER FROM GETLN
CB67: C9 88 633 CMP #$I88 ; IF 85 ASSUME GETLN
CB69: F0 17 634 BEQ GETLN
CB6B: D9 00 02 635 CMP IN ,Y
CB6E: F0 12 636 BEQ GETLN
CB70: 49 20 637 EOR #$20
CB72: D9 00 02 638 SKIP CMP IN,Y ; IF SAME AS CHARACTER IN INPUT
CB75: DO 38 639 BNE NTGETLN ; BUFFER THEN ASSUME GETLN
CB77: AD 78 06 640 LDA OLOCHAR ; GET LAST CHARACTER FROM GETLN
CB7A: 99 00 02 641 STA IN,Y ; FIX INPUT BUFFER
CB7D: 80 03 642 BGE GETLN ; GO TO GETLN
CB7F: 20 ED CA 643 ESC JSR ESCNEW ; PERFORM ESCAPE FUNCTION
CB82: A9 80 644 GETLN LDA #$80 ; SET GETLN FLAG
CB84: 20 F5 C9 645 JSR FLGSET
CB87: 20 44 C8 646 JSR RDKEY ; GET CHARACTER FROM KEYBOARD
CB8A: C9 98 647 CMP #$98 ; CHECK FOR ESCAPE
CB8C: Fl Fl 648 BED ESIC
CB8E: C9 80 649 CMP #$80 ; CHECK FOR CR
CB90: D0 05 650 BNE NOTCR ; IF NOT SKIP
CB92: 48 651 PHA ; SAVE CHARACTER
CB93: 20 01 C9 652 JSR CLREOL ; CLEAR TO END OF LINE
CB96: 68 653 PLA ; RECOVER CHARACTER

5—25

CB97: C9 95 654 NOTCR CMP #$95 ; CHECK FOR PICK
CB99: D0 12 655 BNE NOTPICK ; IF NOT SKIP
CB9B: AC 78 05 656 CHRGET LDY CHORZ ; GET CURSOR HORIZONTAL POSITION
CB9E: 20 59 CA 657 JSR PSHCALC ; SET UP SCREEN ADDRESS
CBAl: 80 05 658 BCS READ1 ; READ CHARACTER FROM SCREEN
CBA3: BD 00 CC 659 LDA DISPO,X
CBA6: 90 03 660 BCC RSKIP
CBA8: BD 00 CO 661 READ1 LDA DISP1,X
CBAB: 09 80 662 RSK IP ORA #$80 ; SET HIGH BIT
CBAD: 80 78 16 663 NOTPICK STA OLDCHAR ; SAVE CHARACTER IN OLDCHAR
CBB0: D0 08 664 BNE DONE ; EXIT
CB02: 20 44 CR 665 NTGETLN JSR RDKEY ; GET CHARACTER FROM KEYBOARD
CB05: AO 00 666 LDY #$00 ; CLEAR CHACHARACTER
CBB7: 8C 78 10 667 STY OLDCHAR

668 *
CBBA: BA 669 DONE TSX ; PUT CHARACTER INTO STACK
CBBB: E8 670 INX
CBBC: E8 671 INX
CBBD: E8 672 INX
CBBE: 9D 00 01 673 STA $100,X
CBC1: A9 00 674 OUTDONE1 LDA #100 ; SET CH = 00
CBC2: B5 24 675 OUTDONE STA CH
CBC5: A0 F8 05 676 LDA CVERT ; SET CV = CVERT
CBC8: B5 25 677 STA CV
CBCA: 4C 2E CR 678 JMP EXIT

679 *
680 *
681 * PRIMARY BASIC OUTPUT ROUTINE
682 *
683 *

CBCD: 68 684 BASOUT PLA ; RECOVER CHARACTER
CBCE: AC FB 07 685 LDY FLAGS ; CHECK GETLN FLAG
CB01: 10 08 686 BPL BOUT ; IF CLEAR THEN SKIP
CB03: AC 78 06 687 LDY OLDCHAR ; GET LAST CHARACTER FROM GETLN
CB06: C0 E0 688 CPY #$E0 ; IF IT IS LOWER CASE THEN USE IT
CB08: 90 01 689 BLT BOUT
CBDA: 98 690 TYA
CBOB: 20 B1 C8 691 BOUT JSR BASOUT 1 ; OUTPUT CHARACTER
CBDE: 20 CF CA 692 JSR STPLST
CBE1: A9 7F 693 LDA #$7F ; CLEAR THE GETLN FLAG
CBE3: 20 A0 C9 694 JSR FLGCLR
CBE6: AD 78 05 695 LDA CHORZ ; GET CURSOR HORIZONTAL

CBE9: E9 47 696 SBC #$47
CBEB: 90 D4 697 BCC OUTDONE1
CBED: 69 1F 698 ADC #$lF
CBEF: 18 699 FIXCH CLC
CBF0: 90 D1 700 BCC OUTDONE

701 *
CBF2: 60 702 ESCTBL DF8 CLSCRN-l
CBF3: 38 703 DF8 ADVANCE-I
CBF4: 72 704 DF8 BS-I
CBF5: 82 705 DF8 LF- I
CBF6: 78 706 DF8 UP - I
CBF7: 00 707 DF8 CLREOL-I
CBF8: 48 708 DF8 CLREOP—I
CBF9: 66 709 DF8 HOME-l

710 *
CBFA: C4 C2 CI
CBFD: FF C3 711 XLTBL HEX C4C2C1FFC3

712 *

5-26

CBFF: EA 713 NOP
714

CC00: 80 FF CF 715 ROMSW STA 5CFFF
CC03; 80 00 C3 716 STA $C300
CC06: 60 717 RTS

——END ASSEMBLY—-

ERRORS: 0

1031 BYTES

SYMBOL TABLE — ALPHABETICAL ORDER:

ADVANCE =$C930 ASAV1 =$04F8 BADX =$CAC7 BADY =$CABO
BASCLC1 =$CA12 BASEH =$04FB BASEL =$047B ? BASINP =$CBSE
BASL =$28 BASOUT =$CBCD BASOUT1 =$C801 BELL =$C919
BELL1 =$C91B BELL2 =$C9ID BOUT =$C000 BS =$C972
BYTE =$0678 CH =$24 CHORZ =$0570 ? CHRGET =$CB9B
CHRPUT =$CA7I CLEOL2 =$C906 CLSOLZ =$C904 CLEOP1 =$CP4F
CLREOL =$C?01 CLREOP =$C949 ELSCRN =$C961 CR =$CA27
CRFLAG =$0478 CRLF =$C900 CSRMOV =$CBDI CSWH =$37
CSWL =$36 CTLTBL =$CA4O CV =$25 CVERT =$OSFB
CVOK =$CBC1 DEVO =$0000 DEV1 =$COB1 DISPO =$0008
DISP1 =$CDOO DONE =$CBBA ENTR =$0031, ESC =$007F
ESC1 =$C8FI ESC2 =$CAFC ESCNEW =$CAED ESCNOW =$CAE6
ESCTBL =$CBF2 EXIT =$082E ? FIXCH =$CBEF FLAGS =$7FB
FLGCLR =$C9A0 FLOSAV =$COA3 FLGSET =$C9F5 GETLN =$0082

? GOTOXY =$CAA8 GOXYl =$C91S GOXY2 =$CACA GOXY3 =$CAA4
HILITE =$09F3 HOME =$C?67 IN =$0200 INDONE =$CO?8
INENTR =$CB32 ? INFAKE =$0005 INIT =$0011 IO =$CB5C
IORTS =$FFCB JSTOADV =$CAOI JVTAB =$C984 KB0 =$0008
KBOSTRB =$COIO KEYIN =$C847 KEYIN2 =$0840 KEYSTAT =$C8SC
KSWH =$39 KSWL =$38 LEAD =$CAPD LEADIN =$COOF
LF =$C9B3 LOLITE =$C99E LOOP =$C81B ? MSLOT =$0778

? NO =$06F8 NOKEY =$C837 NORMOUT =$CI3E NOSHIFT =$CBO6
NOTO =$C?FA NOTI =$C99A NOT2 =$CREF NOTB1 =$C933
HOT@ =$0800 NOTCR =$0097 NOTGOXY =$0987 NOTK =$0862
NOTPICK =$CBAO NTGETLN =$CBB2 NTSHFT =$0870 OLDCHAR =$0678
OUTDONE =$0803 OUTDONEI =$CBCI OUTENTR =$0007 0UTPT1 =$CA89
POFF =$0770 PSAVE =$CO1I PSCLOUT =$0808 PSNCALC =$0A59
PSOUT =$C9A7 RDKEY =$0844 READ =$0014 READ1 =$CBA8
RESTART =$C809 RNDH =$4F RNOL =$4E ? ROMSW =$CCOO

? RSKIP =$OBAB ? RTS2 =$CA22 RTS3 =$0914 RTS4 =$CA3F
RTS6 =$C8F0 RTS8 =$CP4B SETEXIT =$082A SETUP =$C800
SKIP =$CB72 SPKR =$C030 START =$O6FB STATUS =$CB22
STEXIT =$CB2F STOADV =$0927 STPOONE =$CAE5 STPLOOP =$0AD9
STPLST =$CACF TABLE =$C8A1 TEMPX =$05F8 UP =$C970
VDOUT1 =$CA2D VIDOUT =$CA23 VTAB =$CA04 VTABZ =$CA07

? WHERE =$0839 WRITE =$CBlC WRITE1 =$0A85 USKIP =$0A88
XLTBL =$CBFA ? XSAVI =$0578 XSAVE =$35 ZERO =$0894

SYMBOL TABLE — NUMERICAL ORDER:

CH =$24 CV =$25 BASL =$28 XSAVE =$35
CSWL =$36 CSWH =$37 KSWL =$38 KSWH =$39

5—27

RNDL =$4E RNDH =$4F IN =$0200 CRFLAG =$0478
BASEL =$B47B ASAV1 =$04FB BASEH =$O4FB ? XSAVI =$05?8
CHORZ =$B57B TEMPX =$05FB CVERT =$O5FB OLDCHAR =$06Z8
BYTE ~$B67B NO =$0XFB START =$O6F8 ? IISLOT =$0778
POFF =$B77B FLAGS =$07FB KBD =$C000 KBDSTRB =$C010
SPKR =$C030 DEVO =$CBB0 DEVI =$CBB1 SETUP =$CB00
RESTART =$C809 LOOP =$CBIB SETEXIT =$C82A EXIT =$CB2E
NORMOUT =$CB3E RDKEY =$C844 KEYIN =$C847 KEYIN2 =$C840
NOKEY =$CB57 KEYSTAT =$CB5C NOTK =$C862 NTSHFT =$CB7B
NOTe =$CB8C ZERO =$CB94 NOSHIFT =$C896 INDONE =$C898
TABLE =$CBAI BASOUT1 =$CBB1 CYOK =$CBC1 PSCLOUT =$CBCB
CSRMOV =$CB0l RTSX6 =$CBF0 ESCI =$CBFI CLREOL =$CX01
CLEOLZ =$C904 CLEOL2 =$COB6 LEADIN =$CX0E PSAVE =$C91I
RTS3 =$CXI4 GOXYI =$C915 BELL =$C919 BELL1 =$C91B
BELL2 =$C01D STOADV =$C927 NOT81 =$C933 ADVANCE =$C939
RTS8 =$C948 CLREOP =$C949 CLEOPI =$CX4F CLSCRN =$C961
HOME =$C967 BS =$CX72 UP =$CV7C JYTAB =$C984
NOTGOXY =$C9B7 NOT1 =$C97A LOLITE =$C99E LGCLR =$CXAI
FLOSAV =$C9A3 PSOUT =$CPA7 CRLF =$C9BO LF =$C9B3
NOTZ2 =$C9EF HILITE =$C9F3 FLOSET =$C9F5 NOTO =$C9FA
JSTOADV =$CAOI VTAB =$CAO4 VTABZ =$CA07 BASCLC1 =$CAl2

? RTS2 =$CA2Z VIDOUT =$CA23 CR =$CAZ? VOQUTi =$CA2D
RTS4 =$CA3F CTLTBL =$CA40 PSNCALC =$CA59 CHRPUT =$CA71
WRITE1 =$CAB5 WSKIP =$CABB OUTPTI =$CAB9 LEAD =$CA9B
GOXY3 =$CAA4 ? GOTOXY =$CAA8 BADY =$CABD BADO =$CAC7
GOXY2 =$CACA STPLST =$CACF STPLOOP =$CAD9 STPDONE =$CAE5
ESCNOW =$CAE0 ESCHEW =$CAEO ESC2 =$CAFC ? INFAKE =$CBO5
OUTENTR =$CBBZ INIT =$CB11 READ =$CBI4 WRITE =$CBIC
STATUS =$CB22 STEXIT =$CBZF INENTR =$CB32 ENTR =$CB30

? WHERE =$CB3X 10 =$CBXC ? BASINP =$CB5E SKIP =$CBZ2
ESE =$CB7F GETLN =$CBB2 NOTER =$CB97 ? CHRGET =$CB9B
READI =$CBAS RSKIP =$CBAB NOTPICX =$CBAD NTGETLN =$CBB2
DONE =$CBBA OUTOONEI =$CBCI OUTDONE =$CBC3 BASOUT =$CBCD
BOUT =$CBDB ? FIXCH =$CBEF ESCTBL =$CBF2 XLTBL =$CBFA
DISPO =$CC00 ? ROMSW =$CC00 DISP1 =$CDBB IORTS =$FFCB

HARDWARE OPERATION

Theory of Operation

While reading this section, you should make
frequent reference to the labelled photograph of the
VIDEOTERM on page A—4 and the schematic of the board
included as a fold—out end—paper. Also, you should
refer to the description of the board components on
page A—3.

In the middle of the schematic and on the left
of the board are four chips labelled U—1O to U—14,
inclusive. These are the four static Random Access
Memory chips which hold the screen display
information. Due to their low power needs, they
stay relatively cool during board operation and
greatly reduce the power needed to drive the
VIDEOTERM.

Information may be placed in VIDEOTERM memory
by either the user from the Apple II keyboard or by
the VIDEOTERM on—board logic. The determination of
which has control of memory at any moment is made by
the Multiplexer logic, which consists of the three
chips labelled U—14, U—15 and U—16. These are
located directly below the RAM on the schematic
drawing and directly below the CRTC (the largest
chip) on the board.

At the heart of the VIDEOTERM is the Hitichi HD
46505SP CRT Controller which has been described more
fully in the preceding chapter, pages 5—1 to 5—8.
It appears on the right in the schematic and as U—19
in the photograph. It is located, more or less, in
the center of the board. The signal from the CRTC
drives the 2716 EPROM Character Generator, U—2O in
the photograph and in the upper right corner of the
schematic. It contains the standard ASCII character
set and some special graphics symbols in each of two

6—1

character matrix sizes. Accessed by a single 8 bit
code, the generator produces a character signal 8
bits long by 16 lines for definition of an upto 8 by
16 character matrix. Next to the character
generator is a parallel to serial shift register
chip, unit U—21, which is used to actually generate
the character matrix dots. When the graphics
characters are used, cell 1 contents are copied into
cell 0, since the VIDEOTERM actually uses a 9 by 9
character matrix size (9 by 12 with the optional
character set).

The 2708 EPR0M, labelled U—3 in the photograph
and located at the upper left in the schematic, is
the firmware chip which holds the VIDEOTERM software
listed in the Firmware section starting on page
5—15. When activated, this software controls the
VIDEOTERM’s response to your keyboard input and
other data written to it by the Apple II. The 2708
EPROM labelled U—17 in the photograph and located
directly above the RAM in the schematic, contains
the optional second character set of 64 characters
or 128 characters if you are using a 2716 EPROM.
The tri—state inverting buffer, U—24 in the
photograph and located in various portions of the
schematic, is the optional character set EPROM
enable/disable logic circuit.

When the I/O select enables the VIDEOTERM, the
address is accessed by the software as well as by
the multiplexer. The incoming data is made
available to either the CRTC or the memory depending
on the state of the latch circuit, U—5 in the
photograph and located next to the EPROM firmware in
the upper left corner of the schematic. Thus, only
one of the two can be accessing memory at any one
time, the Apple II data bus or the VIDEOTERM display
memory bus. Part of the two to four line decoder,
U—9 in the photograph and near U—5 on the schematic,
is used to generate the write enable signal for the
memory, allowing information to be stored. The
other part of this chip’s circuit is used to

6—2

generate a blank display on the screen while the
Apple II is writing into the VIDEOTERM memory.

Two CMOS flip—flop chips, U—7 and U—8 in the
photo and located near the bottom of the schematic,
control which page of memory (of the four available)
is currently being addressed within the range $CCOO
to $CDFF, and if the VIDEOTERM has been activated or
inactivated by addressing within the $C800 to $CFFF
range (according to Apple II Reference Manual
specifications; also see pages 5—10 and 5—l2ff).

If the VIDEOTERM generated only one character
at a time and did the entire job for each one, it
would operate at an intolerably slow speed. Thus, a
pipeline architecture has been used in the board
design. In effect, the board displays the last
character while it is setting up for the current
character. The data latch, U—18 in the photograph
and in the upper right next to the character
generator on the schematic, operates in conjunction
with the data latch U—5 to control the access timing
to the memory. A delay shift register, U-22 in the
photograph and to the right of the CRTC in the
schematic, operates within this pipeline to
correctly delay and coordinate character attribute
information. This chip also handles the cursor and
display enable signal generated by the CRTC.

In order to drive the board's logic, an
on—board clock circuit, entirely separate from the
Apple II’s clock, is used. This low power circuit
is responsible for the VIDEOTERM’S excellent
character generation. Part of the chip labelled
U—4, the chip U—23 and the crystal contained in the
aluminum can compose the clock circuit.

The chip labelled U—1 in the photograph allows
the cursor to flash on top of another character.
Part of this chip is also used for general buffer
purposes. Chips U—2 and U—6 are used for general
logic circuit purposes.

6—3

Shift Wire Mod

The Shift Wire Mod is a hardware modification
which allows the shift key to be used normally,
provided it has supporting software, such as the
firmware in the Videoterm.

Installation of the Shift Wire Mod

Run a wire from pin 24 of the keyboard
connector (the pin second farthest away from the
power supply on the wire comb which connects the
encoder board to the keyboard) to pin 1 of chip
location H—14 on the motherboard (which is
electrically the same as pin 4 of the game I/O
socket (J—14)).

Use of the Shift Wire Mod

The shift wire mod cannot be used in 40
columns without the use of special software. In 80
columns, the Control—A is used to enter the lower
case mode (another Control—A will return you to
upper case mode). In lower case mode, characters
are lower case unless the shift key is used.

The following special characters are also
available:

Character Mode Description

Left Bracket Shift Lock Control—K
Right Bracket Shift Lock Shift—M
Left Brace Shift Unlock Control—K
Right Brace Shift Unlock Shift—0 (zero)

6—4

The Soft Video Switch.

The Soft Video Switch is an automatic version
of the Switchplate assembly. It will automatically
switch to 80 columns when any character is sent to
the Videoterm. If any color graphics mode is
active, the Soft Video Switch will automatically
switch to the 40 column video signal. When the
graphics mode is deselected the Soft Video Switch
returns to the previous mode.

Installation and checkout of the Soft Video Switch.

1) Turn the Apple][off and remove the cover.

2) Locate the I. C. chip F—14 on the
motherboard. It is the second chip down
from the game I/O socket. The chip is
either a 9334 or a 74LS259. Carefully
remove this chip with an IC puller or a
small flat bladed screwdriver. Set this
chip aside.

3) Plug the Soft Video Switch into the F—14
socket. The five prong molex connector
should face the keyboard. Be sure that
all of the pins go into the socket.

4) Place the chip that you removed from the
F—14 socket into the socket on the Soft
Video Switch. The notched end should
point toward the keyboard (the same
direction as before).

5) Plug the three wire cable from the Soft
Video Switch onto the four prong video
connector on the Apple][motherboard.
The cable should be oriented so that the
two empty holes at the top of the plug are
to the right of the Apple][(i.e. away

6—5

from the power supply). Please note the
four prong video connector on the Soft
Video Switch. This connector is a direct
replacement of the video connector on the
motherboard (for RF modulators).

6) Plug the two wire cable from the Soft
Video Switch onto the five pin video
connector on the Videoterm.

7) Plug the cable supplied with the Videoterm
onto the five prong video connector on the
Soft Video Switch. This cable should be
connected to a monochromatic video
monitor.

8) Turn your Apple on. If the speaker does
not beep upon power up, turn your Apple
off and re—check your installation. Pay
particular attention to step 4.

9) If you have an Autostart ROM, Apple
Language Card, or an Apple][plus, goto
step 10. Otherwise, your display will
probably be blank. If so type the
following:

C058 (CR)

10) Adjust the 40 column video level
adjustment (a little turn dial on the Soft
Video Switch) so that you can see the 40
column screen. You should adjust this to
be the same strength as the Videoterm's
output signal.

Soft Video Switch Theory of Operation.

The Soft Video Switch is controlled by two
conditions: the state of annunciator zero and the
color killer signal. If the color killer is off,

6—6

the Apple][is in its color graphics mode and the
Soft Video Switch will always display 40 columns
(i.e. graphics). If the color killer is on, the
Soft Video Switch follows the state of annunciator
zero (set to off by Autostart on power up and
reset). If the annunciator is off, the Soft Video
Switch displays 40 columns. If the annunciator is
on, 80 columns is displayed. The firmware on the
Videoterm sets annunciator zero on as EACH
character is output. To turn annunciator zero on,
a memory reference to $C058 (—16296) must be made.
To turn it off, $C059 (—16295).

Use of the Soft Video Switch.

To enter 80 columns, type.

PR#3 (CR)

To go back to 40 columns, hit Reset or type a
control Z immediately followed by a “1”. A control
X should be used to prevent an error message in
immediate mode. A return is not required.

6—7

6-8

APPENDIX

ASCII CHARACTER CODE CHART

A-1

TECHNICAL SUMMARY

Board Description

Consult Figure 10, page A—4, for the location
of each IC on the VIDEOTERM board. Function of each
chip is described in the Theory of Operation
section, page 6—1.

Unit No. Description

U—1 74LS86 Exclusive OR gate, general use
U—2 74LS02 Four NOR gates
U—3 2708 EPROM organized as 8 bits x 1K words
U—4 74LS04 Partly used for clock circuit
U—5 74LS373, 74DP8304, OR 74LS245 — Factory
 choice
U—6 75LS00 Four NAND gates
U—7 4013 CMOS flip—flops
U—S 4013 CMOS flip—flops
U—9 74LS139 2 TO 4 LINE DECODER
U—10 2114 Static RAM organized as 4 bits x 1K
 words (low—power)
U—11 2114 Static RAM
U—12 2114 Static RAM
U—13 2114 Static RAM
U—14 74LS157/74LS158 Multiplexer logic use
U—15 74LS157/74LS158 Multiplexer logic use
U—16 74LS157/74LS158 Multiplexer logic use
U—17 2708 or 2716 EPROM containing optional
 character set, organized either

as 8 or 16 bits x 1K words
U—18 74LS273 (Std.) or 74L5374—Factory choice
U—19 Hitachi HD465O55P/Motorola MCM6845 CRT
 Controller
U—20 2716 EPROM Character generator
U—21 74LS166 Parallel to serial shift register
U—22 74LS175 Delay shift register
U—23 74LS161 System timing clock generator
U—24 74LS368 Tri—state inverting buffer

A- 3

Figure 10: VIDEOTERM Board Photograph

A—4

